(1) 實現一個Point類,該類包含表示坐標的兩個int型變量x、y,構造方法Point()和Point(int xx, int yy),返回x值和y值的int getX()和int getY()方法,計算兩點間距離的double distance(Point)方法。其中計算平方根用Math.sqrt()方法。 (2) 實現一個Circle類,該類包含表示圓心的Point型變量center,表示半徑的int radius變量,以及構造方法Circle()、Circle(int xx,int yy,int r)、Circle(Point c,int r),返回周長和面積的int perimeter()、double area()方法,返回兩個圓是否為同一個圓(返回0)、同心圓(返回1)、相交的圓(返回2)、分離的圓(返回3)、包含的圓(返回4)等關系的int relation(Circle c)等方法。PI值可以用Math.PI常量。 (3) 實現測試上述兩個類的ClassTest類。該類在main方法中分別創建若干個Point對象和Circle對象,并調用相關方法,輸出方法的返回值,驗證其正確性。 (4) 將Point類、Circle類和主類的包名分別調整為p1、p2、p3,并重新運行,驗證是否運行正確。
標簽: Point
上傳時間: 2014-11-25
上傳用戶:cylnpy
一被控對象 ,給定為階躍給定,幅值為500,設計一個兩維模糊PI型控制器,輸入語言變量和輸出語言變量均取7個值{NB,NM,NS,ZE,PS,PM,PB},模糊論域為{-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6},用matlab編程仿真研究。
標簽: 對象
上傳時間: 2013-12-16
上傳用戶:大融融rr
private double PointToAngle(Point AOrigin, Point APoint) { if (APoint.X == AOrigin.X) if (APoint.Y > AOrigin.Y) return Math.PI * 0.5f else return Math.PI * 1.5f else if (APoint.Y == AOrigin.Y) if (APoint.X > AOrigin.X) return 0 else return Math.PI else {
標簽: AOrigin APoint Point PointToAngle
上傳時間: 2016-10-31
上傳用戶:zhyiroy
private double PointToAngle(Point AOrigin, Point APoint) { if (APoint.X == AOrigin.X) if (APoint.Y > AOrigin.Y) return Math.PI * 0.5f else return Math.PI * 1.5f else if (APoint.Y == AOrigin.Y) if (APoint.X > AOrigin.X) return 0 else return Math.PI else {
標簽: AOrigin APoint Point PointToAngle
上傳時間: 2016-10-31
上傳用戶:sunjet
private double PointToAngle(Point AOrigin, Point APoint) { if (APoint.X == AOrigin.X) if (APoint.Y > AOrigin.Y) return Math.PI * 0.5f else return Math.PI * 1.5f else if (APoint.Y == AOrigin.Y) if (APoint.X > AOrigin.X) return 0 else return Math.PI else {
標簽: AOrigin APoint Point PointToAngle
上傳時間: 2013-12-18
上傳用戶:rocketrevenge
For solving the following problem: "There is No Free Lunch" Time Limit: 1 Second Memory Limit: 32768 KB One day, CYJJ found an interesting piece of commercial from newspaper: the Cyber-restaurant was offering a kind of "Lunch Special" which was said that one could "buy one get two for free". That is, if you buy one of the dishes on their menu, denoted by di with price pi , you may get the two neighboring dishes di-1 and di+1 for free! If you pick up d1, then you may get d2 and the last one dn for free, and if you choose the last one dn, you may get dn-1 and d1 for free. However, after investigation CYJJ realized that there was no free lunch at all. The price pi of the i-th dish was actually calculated by adding up twice the cost ci of the dish and half of the costs of the two "free" dishes. Now given all the prices on the menu, you are asked to help CYJJ find the cost of each of the dishes.
標簽: Limit following solving problem
上傳時間: 2014-01-12
上傳用戶:362279997
it is a simulation about ML synchronization algorithm in OFDM systems,you can slao see a function picture in its output,that s useful for a beginner
標簽: synchronization simulation algorithm function
上傳時間: 2013-12-17
上傳用戶:yulg
Euler函數: m = p1^r1 * p2^r2 * …… * pn^rn ai >= 1 , 1 <= i <= n Euler函數: 定義:phi(m) 表示小于等于m并且與m互質的正整數的個數。 phi(m) = p1^(r1-1)*(p1-1) * p2^(r2-1)*(p2-1) * …… * pn^(rn-1)*(pn-1) = m*(1 - 1/p1)*(1 - 1/p2)*……*(1 - 1/pn) = p1^(r1-1)*p2^(r2-1)* …… * pn^(rn-1)*phi(p1*p2*……*pn) 定理:若(a , m) = 1 則有 a^phi(m) = 1 (mod m) 即a^phi(m) - 1 整出m 在實際代碼中可以用類似素數篩法求出 for (i = 1 i < MAXN i++) phi[i] = i for (i = 2 i < MAXN i++) if (phi[i] == i) { for (j = i j < MAXN j += i) { phi[j] /= i phi[j] *= i - 1 } } 容斥原理:定義phi(p) 為比p小的與p互素的數的個數 設n的素因子有p1, p2, p3, … pk 包含p1, p2…的個數為n/p1, n/p2… 包含p1*p2, p2*p3…的個數為n/(p1*p2)… phi(n) = n - sigm_[i = 1](n/pi) + sigm_[i!=j](n/(pi*pj)) - …… +- n/(p1*p2……pk) = n*(1 - 1/p1)*(1 - 1/p2)*……*(1 - 1/pk)
上傳時間: 2014-01-10
上傳用戶:wkchong
計算全息close all clc clear A=zeros(64) A(15:20,20:40)=1 A(15:50,20:25)=1 A(45:50,20:40)=1 A(30:34,20:35)=1 % ppp=exp(rand(64)*pi*2*i) A=A.*ppp % Author s email: zjliu2001@163.com figure imshow(abs(A),[]) Fa=fft2(fftshift(A)) Fs=fftshift(Fa) Am=abs(Fs) % amplitude Ph=angle(Fs) % phase s=11 % 這表示邊長嗎? cgh=zeros(64*s) th=max(max(abs(Fs)))
上傳時間: 2014-10-13
上傳用戶:wweqas
// 入口參數: // l: l = 0, 傅立葉變換 l = 1, 逆傅立葉變換 // il: il = 0,不計算傅立葉變換或逆變換模和幅角;il = 1,計算模和幅角 // n: 輸入的點數,為偶數,一般為32,64,128,...,1024等 // k: 滿足n=2^k(k>0),實質上k是n個采樣數據可以分解為偶次冪和奇次冪的次數 // pr[]: l=0時,存放N點采樣數據的實部 // l=1時, 存放傅立葉變換的N個實部 // pi[]: l=0時,存放N點采樣數據的虛部 // l=1時, 存放傅立葉變換的N個虛部 // // 出口參數: // fr[]: l=0, 返回傅立葉變換的實部 // l=1, 返回逆傅立葉變換的實部 // fi[]: l=0, 返回傅立葉變換的虛部 // l=1, 返回逆傅立葉變換的虛部 // pr[]: il = 1,i = 0 時,返回傅立葉變換的模 // il = 1,i = 1 時,返回逆傅立葉變換的模 // pi[]: il = 1,i = 0 時,返回傅立葉變換的輻角 // il = 1,i = 1 時,返回逆傅立葉變換的輻角
上傳時間: 2017-01-03
上傳用戶:ynsnjs