Watermarking schemes evaluation
Abstract鈥擠igital watermarking has been presented as a solution to copy protection of multimedia objects and dozens of schemes and algorithms have been proposed. Two main problems seriously darken the future of this technology though.
Firstly, the large number of attacks and weaknesses which appear as fast as new algorithms are proposed, emphasizes the limits of this technology and in particu-lar the fact that it may not match users expectations.
Secondly, the requirements, tools and methodologies to assess the current technologies are almost non-existent. The lack of benchmarking of current algorithms is bla-tant. This confuses rights holders as well as software and hardware manufacturers and prevents them from using the solution appropriate to their needs. Indeed basing long-lived protection schemes on badly tested watermarking technology does not make sense.
A paper that I presented on Supervisory Control and Data Acquisition (SCADA) won the second prize at the symposium conducted by the Electrical and Electronics Engineering department of the SRM University. Other topics on which I presented papers were Performance enhancement of wireless sensor networks using directional antennas, Smart card application and wireless communication. Also my research idea titled “Wavelet Based Image Compression Using SPIHT Algorithm “secured third prize in a technical festival.
Abstract: This tutorial discusses methods for digitally adjusting the output voltage of a DC-DC converter. The digital adjustmentmethods are with a digital-to-analog converter (DAC), a trim pot (digital potentiometer), and PWM output of a microprocessor.Each method is assessed and several DACs and digital potentiometers presented.
This application note provides a detailed description of themetastable behavior in PLDs from both circuit and statisticalviewpoints. Additionally, the information on the metastablecharacteristics of Cypress PLDs presented here can help youachieve any desired degree of reliability.
Portable, battery-powered operation of electronic apparatushas become increasingly desirable. Medical, remotedata acquisition, power monitoring and other applicationsare good candidates for battery operation. In some circumstances,due to space, power or reliability considerations,it is preferable to operate the circuitry from a single 1.5Vcell. Unfortunately, a 1.5V supply eliminates almost alllinear ICs as design candidates. In fact, the LM10 opamp-reference and the LT®1017/LT1018 comparators arethe only IC gain blocks fully specifi ed for 1.5V operation.Further complications are presented by the 600mV dropof silicon transistors and diodes. This limitation consumesa substantial portion of available supply range, makingcircuit design diffi cult. Additionally, any circuit designedfor 1.5V operation must function at end-of-life batteryvoltage, typically 1.3V. (See Box Section, “Componentsfor 1.5V Operation.”)
設計了水聲信號發生系統中的功率放大電路,可將前級電路產生的方波信號轉換為正弦信號,同時進行濾波、功率放大,使其滿足換能器對輸入信號的要求。該電路以單片機AT89C52,集成6階巴特沃思低通濾波芯片MF6以及大功率運算放大器LM12為核心,通過標準RS232接口與PC進行通信,實現信號增益的程控調節,對干擾信號具有良好的抑制作用。經調試該電路工作穩定正常,輸出波形無失真,在輸出功率以及放大增益、波紋系數等方面均滿足設計要求。
This paper presented a design and implementation of underwater acoustic power amplifer. This circuit converted the rectangle signal generated by frontend circuit into the sine signal, then filtered and power amplification, it meets the requirements of the transducer.Included AT89C52, 6th order Butterworth filter MF6, hipower amplififier LM12.Communication with PC through the RS232 port. The signal gain is adjustable and could be remote controlled. It has a good inhibitory effect on the interference signal. After debugged, this circuit works stable, the output waveform has no distortion, it meets the design requirement in outprt power, amplifier gain and ripple factor.
Construction Strategy of ESD Protection CircuitAbstract: The principles used to construct ESD protection on circuits and the basic conceptions of ESD protection design are presented.Key words:ESD protection/On circuit, ESD design window, ESD current path1 引言靜電放電(ESD,Electrostatic Discharge)給電子器件環境會帶來破壞性的后果。它是造成集成電路失效的主要原因之一。隨著集成電路工藝不斷發展,互補金屬氧化物半導體(CMOS,Complementary Metal-Oxide Semiconductor)的特征尺寸不斷縮小,金屬氧化物半導體(MOS, Metal-Oxide Semiconductor)的柵氧厚度越來越薄,MOS 管能承受的電流和電壓也越來越小,因此要進一步優化電路的抗ESD 性能,需要從全芯片ESD 保護結構的設計來進行考慮。
Abstract: The DS1875 features a pulse-width modulation (PWM) controller that can be used to control aDC-DC converter. The DC-DC converter can then be used to generate the high bias voltages necessaryfor avalanche photodiodes (APDs). This application note describes the operation of a boost converterthat uses the DS1875. Discussion covers the selection of the inductor and switching frequency, and theselection of components that improve the efficiency of the converter. Test data are presented.
AN22 details the theoretical and application aspects of the LT1088 thermal RMS/DC converter. The basic theory behind thermal RMS/DC conversion is discussed and design details of the LT1088 are presented. Circuitry for RMS/DC converters, wideband input buffers and heater protection is shown.