-
經典c程序100例==1--10 【程序1】 題目:有1、2、3、4個數字,能組成多少個互不相同且無重復數字的三位數?都是多少? 1.程序分析:可填在百位、十位、個位的數字都是1、2、3、4。組成所有的排列后再去 掉不滿足條件的排列。 2.程序源代碼: main() { int i,j,k printf("\n") for(i=1 i<5 i++) /*以下為三重循環*/ for(j=1 j<5 j++) for (k=1 k<5 k++) { if (i!=k&&i!=j&&j!=k) /*確保i、j、k三位互不相同*/ printf("%d,%d,%d\n",i,j,k) }
標簽:
100
程序
10
數字
上傳時間:
2014-01-07
上傳用戶:lizhizheng88
-
此為編譯原理實驗報告 學習消除文法左遞規算法,了解消除文法左遞規在語法分析中的作用 內含 設計算法 目的 源碼 等等.... 算法:消除左遞歸算法為: (1)把文法G的所有非終結符按任一種順序排列成P1,P2,…Pn 按此順序執行 (2)FOR i:=1 TO n DO BEGIN FOR j:=1 DO 把形如Pi→Pjγ的規則改寫成 Pi→δ1γ δ2γ … δkγ。其中Pj→δ1 δ2 … δk是關于Pj的所有規則; 消除關于Pi規則的直接左遞歸性 END (3)化簡由(2)所得的文法。即去除那些從開始符號出發永遠無法到達的非終結符的 產生規則。
標簽:
編譯原理
實驗報告
算法
上傳時間:
2015-03-29
上傳用戶:極客
-
算法介紹
矩陣求逆在程序中很常見,主要應用于求Billboard矩陣。按照定義的計算方法乘法運算,嚴重影響了性能。在需要大量Billboard矩陣運算時,矩陣求逆的優化能極大提高性能。這里要介紹的矩陣求逆算法稱為全選主元高斯-約旦法。
高斯-約旦法(全選主元)求逆的步驟如下:
首先,對于 k 從 0 到 n - 1 作如下幾步:
從第 k 行、第 k 列開始的右下角子陣中選取絕對值最大的元素,并記住次元素所在的行號和列號,在通過行交換和列交換將它交換到主元素位置上。這一步稱為全選主元。
m(k, k) = 1 / m(k, k)
m(k, j) = m(k, j) * m(k, k),j = 0, 1, ..., n-1;j != k
m(i, j) = m(i, j) - m(i, k) * m(k, j),i, j = 0, 1, ..., n-1;i, j != k
m(i, k) = -m(i, k) * m(k, k),i = 0, 1, ..., n-1;i != k
最后,根據在全選主元過程中所記錄的行、列交換的信息進行恢復,恢復的原則如下:在全選主元過程中,先交換的行(列)后進行恢復;原來的行(列)交換用列(行)交換來恢復。
標簽:
算法
矩陣求逆
程序
上傳時間:
2015-04-09
上傳用戶:wang5829
-
給定n 個整數a ,a , ,an 1 2 組成的序列, a n i | |£ ,1 £ i £ n。如果對于i £ j ,有
0 = å
=
j
k i
k a ,則稱序列區間i i j a , a , , a +1 為一個零和區間,相應的區間長度為j-i+1。
標簽:
61516
an
整數
序列
上傳時間:
2015-07-23
上傳用戶:zhangzhenyu
-
給定n 個整數a ,a , ,an 1 2 組成的序列, a n i | |£ ,1 £ i £ n。如果對于i £ j ,有
0 = å
=
j
k i
k a ,則稱序列區間i i j a , a , , a +1 為一個零和區間,相應的區間長度為j-i+1。
標簽:
61516
an
整數
序列
上傳時間:
2013-12-21
上傳用戶:偷心的海盜
-
經典C語言程序設計100例1-10
如【程序1】
題目:有1、2、3、4個數字,能組成多少個互不相同且無重復數字的三位數?都是多少?
1.程序分析:可填在百位、十位、個位的數字都是1、2、3、4。組成所有的排列后再去
掉不滿足條件的排列。
2.程序源代碼:
main()
{
int i,j,k
printf("\n")
for(i=1 i<5 i++) /*以下為三重循環*/
for(j=1 j<5 j++)
for (k=1 k<5 k++)
{
if (i!=k&&i!=j&&j!=k) /*確保i、j、k三位互不相同*/
printf("%d,%d,%d\n",i,j,k)
}
}
標簽:
100
10
C語言
程序設計
上傳時間:
2013-12-14
上傳用戶:hfmm633
-
Floyd-Warshall算法描述
1)適用范圍:
a)APSP(All Pairs Shortest Paths)
b)稠密圖效果最佳
c)邊權可正可負
2)算法描述:
a)初始化:dis[u,v]=w[u,v]
b)For k:=1 to n
For i:=1 to n
For j:=1 to n
If dis[i,j]>dis[i,k]+dis[k,j] Then
Dis[I,j]:=dis[I,k]+dis[k,j]
c)算法結束:dis即為所有點對的最短路徑矩陣
3)算法小結:此算法簡單有效,由于三重循環結構緊湊,對于稠密圖,效率要高于執行|V|次Dijkstra算法。時間復雜度O(n^3)。
考慮下列變形:如(I,j)∈E則dis[I,j]初始為1,else初始為0,這樣的Floyd算法最后的最短路徑矩陣即成為一個判斷I,j是否有通路的矩陣。更簡單的,我們可以把dis設成boolean類型,則每次可以用“dis[I,j]:=dis[I,j]or(dis[I,k]and dis[k,j])”來代替算法描述中的藍色部分,可以更直觀地得到I,j的連通情況。
標簽:
Floyd-Warshall
Shortest
Pairs
Paths
上傳時間:
2013-12-01
上傳用戶:dyctj
-
《Java手機程式設計入門》/王森
書號:29014
頁數:約 492 頁
ISBN:957-200-527-8
出版日期:2001年08月25日
出版廠商:知城數位科技股份有限公司
訂價:380
第一章 Java 2 Micro Edition概論陣
第二章 Java程式設計簡介陣
第三章 撰寫您的第一個手機程式陣
第四章 在實體機器上執行MIDlet陣
第五章 J2ME Wireless Toolkit陣
第六章 Motorola A6288手機程式開發陣
第七章 JBuilder MobileSet陣
第八章 MIDP for Palm
第九章 MIDlet的事件處理陣
第十章 MIDP圖形使用者介面程式設計陣
第十一章 MIDP圖形處理陣
第十二章 MIDP資料庫程式設計陣
第十三章 MIDP網路程式設計陣
附錄A MID其他參考資源總整理陣
附錄B Motorola J2ME SDK
標簽:
29014
Java
2001
ISBN
上傳時間:
2016-12-01
上傳用戶:coeus
-
遙控解碼通過電腦串口顯示
/* 晶振:11.0569MHz */
#include <REGX52.h>
#define uchar unsigned char
uchar data IRcode[4] //定義一個4字節的數組用來存儲代碼
uchar CodeTemp //編碼字節緩存變量
uchar i,j,k //延時用的循環變量
sbit IRsignal=P3^2 //HS0038接收頭OUT端直接連P3.2(INT0)
/**************************延時0.9ms子程序**********************/
void Delay0_9ms(void)
{uchar j,k
for(j=18 j>0 j--)
for(k=20 k>0 k--)
}
/***************************延時1ms子程序**********************/
void Delay1ms(void)
{uchar i,j
for(i=2 i>0 i--)
for(j=230 j>0 j--)
}
標簽:
uchar
unsigned
11.0569
include
上傳時間:
2013-12-12
上傳用戶:Breathe0125
-
嚴格按照BP網絡計算公式來設計的一個matlab程序,對BP網絡進行了優化設計
優化1:設計了yyy,即在o(k)計算公式時,當網絡進入平坦區時(<0.0001)學習率加大,出來后學習率又還原
優化2:v(i,j)=v(i,j)+deltv(i,j)+a*dv(i,j)
標簽:
matlab
yyy
BP網絡
計算公式
上傳時間:
2014-11-30
上傳用戶:妄想演繹師