算法介紹 矩陣求逆在程序中很常見,主要應(yīng)用于求Billboard矩陣。按照定義的計(jì)算方法乘法運(yùn)算,嚴(yán)重影響了性能。在需要大量Billboard矩陣運(yùn)算時(shí),矩陣求逆的優(yōu)化能極大提高性能。這里要介紹的矩陣求逆算法稱為全選主元高斯-約旦法。 高斯-約旦法(全選主元)求逆的步驟如下: 首先,對(duì)于 k 從 0 到 n - 1 作如下幾步: 從第 k 行、第 k 列開始的右下角子陣中選取絕對(duì)值最大的元素,并記住次元素所在的行號(hào)和列號(hào),在通過行交換和列交換將它交換到主元素位置上。這一步稱為全選主元。 m(k, k) = 1 / m(k, k) m(k, j) = m(k, j) * m(k, k),j = 0, 1, ..., n-1;j != k m(i, j) = m(i, j) - m(i, k) * m(k, j),i, j = 0, 1, ..., n-1;i, j != k m(i, k) = -m(i, k) * m(k, k),i = 0, 1, ..., n-1;i != k 最后,根據(jù)在全選主元過程中所記錄的行、列交換的信息進(jìn)行恢復(fù),恢復(fù)的原則如下:在全選主元過程中,先交換的行(列)后進(jìn)行恢復(fù);原來的行(列)交換用列(行)交換來恢復(fù)。
上傳時(shí)間: 2015-04-09
上傳用戶:wang5829
附有本人超級(jí)詳細(xì)解釋(看不懂的面壁十天!) 一、 實(shí)際問題: 希爾排序(Shell Sort)是插入排序的一種。因D.L.Shell于1959年提出而得名。它又稱“縮小增量分類法”,在時(shí)間效率上比插入、比較、冒泡等排序算法有了較大改進(jìn)。能對(duì)無序序列按一定規(guī)律進(jìn)行排序。 二、數(shù)學(xué)模型: 先取一個(gè)小于n的整數(shù)d1作為第一個(gè)增量,把文件的全部記錄分成d1個(gè)組。所有距離為dl的倍數(shù)的記錄放在同一個(gè)組中。先在各組內(nèi)進(jìn)行直接插人排序;然后,取第二個(gè)增量d2<d1重復(fù)上述的分組和排序,直至所取的增量dt=1(dt<dt-l<…<d2<d1),即所有記錄放在同一組中進(jìn)行直接插入排序?yàn)橹埂T摲椒▽?shí)質(zhì)上是一種分組插入方法。 三、算法設(shè)計(jì): 1、將相隔某個(gè)增量dlta[k]的元素構(gòu)成一個(gè)子序列。在排序過程中,逐次減小這個(gè)增量,最后當(dāng)h減到1時(shí),進(jìn)行一次插入排序,排序就完成。增量序列一般采用:dlta[k]=2t-k+1-1,其中t為排序趟數(shù),1≤k≤t≤[log2 (n+1)],其中n為待排序序列的長度。按增量序列dlta[0..t-1]。 2、按增量dlta[k](1≤k≤t≤[log2 (n+1)])進(jìn)行一趟希爾插入排序。 3、在主函數(shù)中控制程序執(zhí)行流程。 4、時(shí)間復(fù)雜度:1≤k≤t≤[log2 (n+1)]時(shí)為O(n3/2)。
上傳時(shí)間: 2013-12-11
上傳用戶:天涯
Routine mampres: To obtain amplitude response from h(exp(jw)). input parameters: h :n dimensioned complex array. the frequency response is stored in h(0) to h(n-1). n :the dimension of h and amp. fs :sampling frequency (Hz). iamp:If iamp=0: The Amplitude Res. amp(k)=abs(h(k)) If iamp=1: The Amplitude Res. amp(k)=20.*alog10(abs(h(k))). output parameters: amp :n dimensioned real array. the amplitude-frequency response is stored in amp(0) to amp(n-1). Note: this program will generate a data file "filename.dat" . in chapter 2
標(biāo)簽: dimensione parameters amplitude response
上傳時(shí)間: 2013-12-19
上傳用戶:xfbs821
經(jīng)典C語言程序設(shè)計(jì)100例1-10 如【程序1】 題目:有1、2、3、4個(gè)數(shù)字,能組成多少個(gè)互不相同且無重復(fù)數(shù)字的三位數(shù)?都是多少? 1.程序分析:可填在百位、十位、個(gè)位的數(shù)字都是1、2、3、4。組成所有的排列后再去 掉不滿足條件的排列。 2.程序源代碼: main() { int i,j,k printf("\n") for(i=1 i<5 i++) /*以下為三重循環(huán)*/ for(j=1 j<5 j++) for (k=1 k<5 k++) { if (i!=k&&i!=j&&j!=k) /*確保i、j、k三位互不相同*/ printf("%d,%d,%d\n",i,j,k) } }
標(biāo)簽: 100 10 C語言 程序設(shè)計(jì)
上傳時(shí)間: 2013-12-14
上傳用戶:hfmm633
《算法分析與設(shè)計(jì)》中的 “矩陣連乘程序”給定n個(gè)矩陣{A1,A2,…,An},其中Ai與Ai+1是可乘的,i=1,2 ,…,n-1。由于矩陣滿足乘法的結(jié)合律,根據(jù)加括號(hào)的如何確定計(jì)算矩陣連乘積的計(jì)算次序,使得依此次序計(jì)算矩陣連乘積需要的數(shù)乘次數(shù)最少。
上傳時(shí)間: 2015-11-22
上傳用戶:ma1301115706
Floyd-Warshall算法描述 1)適用范圍: a)APSP(All Pairs Shortest Paths) b)稠密圖效果最佳 c)邊權(quán)可正可負(fù) 2)算法描述: a)初始化:dis[u,v]=w[u,v] b)For k:=1 to n For i:=1 to n For j:=1 to n If dis[i,j]>dis[i,k]+dis[k,j] Then Dis[I,j]:=dis[I,k]+dis[k,j] c)算法結(jié)束:dis即為所有點(diǎn)對(duì)的最短路徑矩陣 3)算法小結(jié):此算法簡(jiǎn)單有效,由于三重循環(huán)結(jié)構(gòu)緊湊,對(duì)于稠密圖,效率要高于執(zhí)行|V|次Dijkstra算法。時(shí)間復(fù)雜度O(n^3)。 考慮下列變形:如(I,j)∈E則dis[I,j]初始為1,else初始為0,這樣的Floyd算法最后的最短路徑矩陣即成為一個(gè)判斷I,j是否有通路的矩陣。更簡(jiǎn)單的,我們可以把dis設(shè)成boolean類型,則每次可以用“dis[I,j]:=dis[I,j]or(dis[I,k]and dis[k,j])”來代替算法描述中的藍(lán)色部分,可以更直觀地得到I,j的連通情況。
標(biāo)簽: Floyd-Warshall Shortest Pairs Paths
上傳時(shí)間: 2013-12-01
上傳用戶:dyctj
給定n個(gè)矩陣{A1,A2,…,An},其中Ai與Ai+1是可乘的,i=1,2,…,n-1。考察這n個(gè)矩陣的連乘積A1A2…An。由于矩陣乘法滿足結(jié)合律,故計(jì)算矩陣的連乘積可以有許多不同的計(jì)算次序,這種計(jì)算次序可以用加括號(hào)的方式來確定。若一個(gè)矩陣連乘積的計(jì)算次序完全確定,則可以依此次序反復(fù)調(diào)用2個(gè)矩陣相乘的標(biāo)準(zhǔn)算法(有改進(jìn)的方法,這里不考慮)計(jì)算出矩陣連乘積。若A是一個(gè)p×q矩陣,B是一個(gè)q×r矩陣,則計(jì)算其乘積C=AB的標(biāo)準(zhǔn)算法中,需要進(jìn)行pqr次數(shù)乘。
上傳時(shí)間: 2016-06-18
上傳用戶:hjshhyy
K-MEANS算法 輸入:聚類個(gè)數(shù)k,以及包含 n個(gè)數(shù)據(jù)對(duì)象的數(shù)據(jù)庫。 輸出:滿足方差最小標(biāo)準(zhǔn)的k個(gè)聚類。 處理流程: (1) 從 n個(gè)數(shù)據(jù)對(duì)象任意選擇 k 個(gè)對(duì)象作為初始聚類中心; (2) 循環(huán)(3)到(4)直到每個(gè)聚類不再發(fā)生變化為止 (3) 根據(jù)每個(gè)聚類對(duì)象的均值(中心對(duì)象),計(jì)算每個(gè)對(duì)象與這些中心對(duì)象的距離;并根據(jù)最小距離重新對(duì)相應(yīng)對(duì)象進(jìn)行劃分; (4) 重新計(jì)算每個(gè)(有變化)聚類的均值(中心對(duì)象)
上傳時(shí)間: 2013-12-20
上傳用戶:chenjjer
題目:加密軟件 要求:(1)輸入任意一段明文M,以及密鑰K (2)根據(jù)一下公式將其轉(zhuǎn)換為密文C。 Ci = mi + K ,其中i = 0,1,……n-1 , K 為密鑰; (3)具有輸入輸出界面。
上傳時(shí)間: 2013-11-25
上傳用戶:shawvi
k個(gè)位子,n個(gè)元素填充,每個(gè)位置上數(shù)字可重復(fù)。例程為一簡(jiǎn)潔的遞歸算法,顯示所有可能的組合
標(biāo)簽:
上傳時(shí)間: 2017-09-01
上傳用戶:181992417
蟲蟲下載站版權(quán)所有 京ICP備2021023401號(hào)-1