-
Hopfield 網(wǎng)——擅長(zhǎng)于聯(lián)想記憶與解迷路 實(shí)現(xiàn)H網(wǎng)聯(lián)想記憶的關(guān)鍵,是使被記憶的模式樣本對(duì)應(yīng)網(wǎng)絡(luò)能量函數(shù)的極小值。 設(shè)有M個(gè)N維記憶模式,通過對(duì)網(wǎng)絡(luò)N個(gè)神經(jīng)元之間連接權(quán) wij 和N個(gè)輸出閾值θj的設(shè)計(jì),使得: 這M個(gè)記憶模式所對(duì)應(yīng)的網(wǎng)絡(luò)狀態(tài)正好是網(wǎng)絡(luò)能量函數(shù)的M個(gè)極小值。 比較困難,目前還沒有一個(gè)適應(yīng)任意形式的記憶模式的有效、通用的設(shè)計(jì)方法。 H網(wǎng)的算法 1)學(xué)習(xí)模式——決定權(quán)重 想要記憶的模式,用-1和1的2值表示 模式:-1,-1,1,-1,1,1,... 一般表示: 則任意兩個(gè)神經(jīng)元j、i間的權(quán)重: wij=∑ap(i)ap(j),p=1…p; P:模式的總數(shù) ap(s):第p個(gè)模式的第s個(gè)要素(-1或1) wij:第j個(gè)神經(jīng)元與第i個(gè)神經(jīng)元間的權(quán)重 i = j時(shí),wij=0,即各神經(jīng)元的輸出不直接返回自身。 2)想起模式: 神經(jīng)元輸出值的初始化 想起時(shí),一般是未知的輸入。設(shè)xi(0)為未知模式的第i個(gè)要素(-1或1) 將xi(0)作為相對(duì)應(yīng)的神經(jīng)元的初始值,其中,0意味t=0。 反復(fù)部分:對(duì)各神經(jīng)元,計(jì)算: xi (t+1) = f (∑wijxj(t)-θi), j=1…n, j≠i n—神經(jīng)元總數(shù) f()--Sgn() θi—神經(jīng)元i發(fā)火閾值 反復(fù)進(jìn)行,直到各個(gè)神經(jīng)元的輸出不再變化。
標(biāo)簽:
Hopfield
聯(lián)想
上傳時(shí)間:
2015-03-16
上傳用戶:JasonC
-
詞法分析程序,可對(duì)以下的C源程序進(jìn)行分析:main() {int a[12] ,sum for(i=1 i<=12 i++) {for(j=1 j<=12 j++)scanf("%d",&a[i][j]) } for(i=12 i>=1 i--){ for(j=12 j>=1 j--){ if(i==j&&i+j==13)sum+=a[i][j] } } printf("%c",sum) }
標(biāo)簽:
分
程序
上傳時(shí)間:
2013-12-26
上傳用戶:skhlm
-
算法介紹
矩陣求逆在程序中很常見,主要應(yīng)用于求Billboard矩陣。按照定義的計(jì)算方法乘法運(yùn)算,嚴(yán)重影響了性能。在需要大量Billboard矩陣運(yùn)算時(shí),矩陣求逆的優(yōu)化能極大提高性能。這里要介紹的矩陣求逆算法稱為全選主元高斯-約旦法。
高斯-約旦法(全選主元)求逆的步驟如下:
首先,對(duì)于 k 從 0 到 n - 1 作如下幾步:
從第 k 行、第 k 列開始的右下角子陣中選取絕對(duì)值最大的元素,并記住次元素所在的行號(hào)和列號(hào),在通過行交換和列交換將它交換到主元素位置上。這一步稱為全選主元。
m(k, k) = 1 / m(k, k)
m(k, j) = m(k, j) * m(k, k),j = 0, 1, ..., n-1;j != k
m(i, j) = m(i, j) - m(i, k) * m(k, j),i, j = 0, 1, ..., n-1;i, j != k
m(i, k) = -m(i, k) * m(k, k),i = 0, 1, ..., n-1;i != k
最后,根據(jù)在全選主元過程中所記錄的行、列交換的信息進(jìn)行恢復(fù),恢復(fù)的原則如下:在全選主元過程中,先交換的行(列)后進(jìn)行恢復(fù);原來的行(列)交換用列(行)交換來恢復(fù)。
標(biāo)簽:
算法
矩陣求逆
程序
上傳時(shí)間:
2015-04-09
上傳用戶:wang5829
-
一個(gè)簡(jiǎn)單的類似鋼琴的游戲,能夠發(fā)出3個(gè)8度音,
低音:1~7;
中音:Q~U或q~u;
高音:A~J或a~j;
標(biāo)簽:
鋼琴
上傳時(shí)間:
2015-06-09
上傳用戶:784533221
-
Floyd-Warshall算法描述
1)適用范圍:
a)APSP(All Pairs Shortest Paths)
b)稠密圖效果最佳
c)邊權(quán)可正可負(fù)
2)算法描述:
a)初始化:dis[u,v]=w[u,v]
b)For k:=1 to n
For i:=1 to n
For j:=1 to n
If dis[i,j]>dis[i,k]+dis[k,j] Then
Dis[I,j]:=dis[I,k]+dis[k,j]
c)算法結(jié)束:dis即為所有點(diǎn)對(duì)的最短路徑矩陣
3)算法小結(jié):此算法簡(jiǎn)單有效,由于三重循環(huán)結(jié)構(gòu)緊湊,對(duì)于稠密圖,效率要高于執(zhí)行|V|次Dijkstra算法。時(shí)間復(fù)雜度O(n^3)。
考慮下列變形:如(I,j)∈E則dis[I,j]初始為1,else初始為0,這樣的Floyd算法最后的最短路徑矩陣即成為一個(gè)判斷I,j是否有通路的矩陣。更簡(jiǎn)單的,我們可以把dis設(shè)成boolean類型,則每次可以用“dis[I,j]:=dis[I,j]or(dis[I,k]and dis[k,j])”來代替算法描述中的藍(lán)色部分,可以更直觀地得到I,j的連通情況。
標(biāo)簽:
Floyd-Warshall
Shortest
Pairs
Paths
上傳時(shí)間:
2013-12-01
上傳用戶:dyctj
-
求標(biāo)準(zhǔn)偏差
> function c=myfunction(x)
> [m,n]=size(x)
> t=0
> for i=1:numel(x)
> t=t+x(i)*x(i)
> end
> c=sqrt(t/(m*n-1))
function c=myfunction(x)
[m,n]=size(x)
t=0
for i=1:m
for j=1:n
t=t+x(i,j)*x(i,j)
end
end
c=sqrt(t/(m*n-1
標(biāo)簽:
gt
myfunction
function
numel
上傳時(shí)間:
2014-01-15
上傳用戶:hongmo
-
求標(biāo)準(zhǔn)偏差
> function c=myfunction(x)
> [m,n]=size(x)
> t=0
> for i=1:numel(x)
> t=t+x(i)*x(i)
> end
> c=sqrt(t/(m*n-1))
function c=myfunction(x)
[m,n]=size(x)
t=0
for i=1:m
for j=1:n
t=t+x(i,j)*x(i,j)
end
end
c=sqrt(t/(m*n-1
標(biāo)簽:
gt
myfunction
function
numel
上傳時(shí)間:
2013-12-26
上傳用戶:dreamboy36
-
求標(biāo)準(zhǔn)偏差
> function c=myfunction(x)
> [m,n]=size(x)
> t=0
> for i=1:numel(x)
> t=t+x(i)*x(i)
> end
> c=sqrt(t/(m*n-1))
function c=myfunction(x)
[m,n]=size(x)
t=0
for i=1:m
for j=1:n
t=t+x(i,j)*x(i,j)
end
end
c=sqrt(t/(m*n-1
標(biāo)簽:
gt
myfunction
function
numel
上傳時(shí)間:
2016-06-28
上傳用戶:change0329
-
求標(biāo)準(zhǔn)偏差
> function c=myfunction(x)
> [m,n]=size(x)
> t=0
> for i=1:numel(x)
> t=t+x(i)*x(i)
> end
> c=sqrt(t/(m*n-1))
function c=myfunction(x)
[m,n]=size(x)
t=0
for i=1:m
for j=1:n
t=t+x(i,j)*x(i,j)
end
end
c=sqrt(t/(m*n-1
標(biāo)簽:
gt
myfunction
function
numel
上傳時(shí)間:
2014-09-03
上傳用戶:jjj0202
-
動(dòng)態(tài)規(guī)劃的方程大家都知道,就是
f[i,j]=min{f[i-1,j-1],f[i-1,j],f[i,j-1],f[i,j+1]}+a[i,j]
但是很多人會(huì)懷疑這道題的后效性而放棄動(dòng)規(guī)做法。
本來我還想做Dijkstra,后來變了沒二十行pascal就告訴我數(shù)組越界了……(dist:array[1..1000*1001
div 2]...)
無奈之余看了xj_kidb1的題解,剛開始還覺得有問題,后來豁然開朗……
反復(fù)動(dòng)規(guī)。上山容易下山難,我們可以從上往下走,最后輸出f[n][1]。
xj_kidb1的一個(gè)技巧很重要,每次令f[i][0]=f[i][i],f[i][i+1]=f[i][1](xj_kidb1的題解還寫錯(cuò)了)
標(biāo)簽:
動(dòng)態(tài)規(guī)劃
方程
家
上傳時(shí)間:
2014-07-16
上傳用戶:libinxny