Boost C++ Libraries Free peer-reviewed portable C++ source libraries Boost C++ Libraries 基本上是一個免費(fèi)的 C++ 的跨平臺函式庫集合,基本上應(yīng)該可以把它視為 C++ STL 的功能再延伸;他最大的特色在於他是一個經(jīng)過「同行評審」(peer review,可參考維基百科)、開放原始碼的函式庫,而且有許多 Boost 的函式庫是由 C++ 標(biāo)準(zhǔn)委員會的人開發(fā)的,同時部分函式庫的功能也已經(jīng)成為 C++ TR1 (Technical Report 1,參考維基百科)、TR2、或是 C++ 0x 的標(biāo)準(zhǔn)了。 它的官方網(wǎng)站是:http://www.boost.org/,包含了 104 個不同的 library;由於他提供的函式庫非常地多,的內(nèi)容也非常地多元,根據(jù)官方的分類,大致上可以分為下面這二十類: 字串和文字處理(String and text processing) 容器(Containers) Iterators 演算法(Algorithms) Function objects and higher-order programming 泛型(Generic Programming) Template Metaprogramming Preprocessor Metaprogramming Concurrent Programming 數(shù)學(xué)與數(shù)字(Math and numerics) 正確性與測試(Correctness and testing) 資料結(jié)構(gòu)(Data structures) 影像處理(Image processing) 輸入、輸出(Input/Output) Inter-language support 記憶體(Memory) 語法分析(Parsing) 程式介面(Programming Interfaces) 其他雜項(xiàng) Broken compiler workarounds 其中每一個分類,又都包含了一個或多個函式庫,可以說是功能相當(dāng)豐富。
標(biāo)簽: Boost C++ Libraries
上傳時間: 2015-05-15
上傳用戶:fangfeng
李明陽教材,僅適合初學(xué)者,主要是實(shí)例教程,在實(shí)踐中學(xué)習(xí)電磁場的基本原理
標(biāo)簽: HFSS
上傳時間: 2015-05-25
上傳用戶:11220163
第1章 緒論 1 1.1 程序設(shè)計語言概述 1 1.1.1 機(jī)器語言 1 1.1.2 匯編語言 2 1.1.3 高級語言 2 1.1.4 C語言 3 1.2 C語言的優(yōu)點(diǎn)和缺點(diǎn) 4 1.2.1 C語言的優(yōu)點(diǎn) 4 1.2.2 C語言的缺點(diǎn) 6 1.3 算法概述 7 1.3.1 算法的基本特征 7 1.3.2 算法的復(fù)雜度 8 1.3.3 算法的準(zhǔn)確性 10 1.3.4 算法的穩(wěn)定性 14 第2章 復(fù)數(shù)運(yùn)算 18 2.1 復(fù)數(shù)的四則運(yùn)算 18 2.1.1 [算法1] 復(fù)數(shù)乘法 18 2.1.2 [算法2] 復(fù)數(shù)除法 20 2.1.3 【實(shí)例5】 復(fù)數(shù)的四則運(yùn)算 22 2.2 復(fù)數(shù)的常用函數(shù)運(yùn)算 23 2.2.1 [算法3] 復(fù)數(shù)的乘冪 23 2.2.2 [算法4] 復(fù)數(shù)的n次方根 25 2.2.3 [算法5] 復(fù)數(shù)指數(shù) 27 2.2.4 [算法6] 復(fù)數(shù)對數(shù) 29 2.2.5 [算法7] 復(fù)數(shù)正弦 30 2.2.6 [算法8] 復(fù)數(shù)余弦 32 2.2.7 【實(shí)例6】 復(fù)數(shù)的函數(shù)運(yùn)算 34 第3章 多項(xiàng)式計算 37 3.1 多項(xiàng)式的表示方法 37 3.1.1 系數(shù)表示法 37 3.1.2 點(diǎn)表示法 38 3.1.3 [算法9] 系數(shù)表示轉(zhuǎn)化為點(diǎn)表示 38 3.1.4 [算法10] 點(diǎn)表示轉(zhuǎn)化為系數(shù)表示 42 3.1.5 【實(shí)例7】 系數(shù)表示法與點(diǎn)表示法的轉(zhuǎn)化 46 3.2 多項(xiàng)式運(yùn)算 47 3.2.1 [算法11] 復(fù)系數(shù)多項(xiàng)式相乘 47 3.2.2 [算法12] 實(shí)系數(shù)多項(xiàng)式相乘 50 3.2.3 [算法13] 復(fù)系數(shù)多項(xiàng)式相除 52 3.2.4 [算法14] 實(shí)系數(shù)多項(xiàng)式相除 54 3.2.5 【實(shí)例8】 復(fù)系數(shù)多項(xiàng)式的乘除法 56 3.2.6 【實(shí)例9】 實(shí)系數(shù)多項(xiàng)式的乘除法 57 3.3 多項(xiàng)式的求值 59 3.3.1 [算法15] 一元多項(xiàng)式求值 59 3.3.2 [算法16] 一元多項(xiàng)式多組求值 60 3.3.3 [算法17] 二元多項(xiàng)式求值 63 3.3.4 【實(shí)例10】 一元多項(xiàng)式求值 65 3.3.5 【實(shí)例11】 二元多項(xiàng)式求值 66 第4章 矩陣計算 68 4.1 矩陣相乘 68 4.1.1 [算法18] 實(shí)矩陣相乘 68 4.1.2 [算法19] 復(fù)矩陣相乘 70 4.1.3 【實(shí)例12】 實(shí)矩陣與復(fù)矩陣的乘法 72 4.2 矩陣的秩與行列式值 73 4.2.1 [算法20] 求矩陣的秩 73 4.2.2 [算法21] 求一般矩陣的行列式值 76 4.2.3 [算法22] 求對稱正定矩陣的行列式值 80 4.2.4 【實(shí)例13】 求矩陣的秩和行列式值 82 4.3 矩陣求逆 84 4.3.1 [算法23] 求一般復(fù)矩陣的逆 84 4.3.2 [算法24] 求對稱正定矩陣的逆 90 4.3.3 [算法25] 求托伯利茲矩陣逆的Trench方法 92 4.3.4 【實(shí)例14】 驗(yàn)證矩陣求逆算法 97 4.3.5 【實(shí)例15】 驗(yàn)證T矩陣求逆算法 99 4.4 矩陣分解與相似變換 102 4.4.1 [算法26] 實(shí)對稱矩陣的LDL分解 102 4.4.2 [算法27] 對稱正定實(shí)矩陣的Cholesky分解 104 4.4.3 [算法28] 一般實(shí)矩陣的全選主元LU分解 107 4.4.4 [算法29] 一般實(shí)矩陣的QR分解 112 4.4.5 [算法30] 對稱實(shí)矩陣相似變換為對稱三對角陣 116 4.4.6 [算法31] 一般實(shí)矩陣相似變換為上Hessen-Burg矩陣 121 4.4.7 【實(shí)例16】 對一般實(shí)矩陣進(jìn)行QR分解 126 4.4.8 【實(shí)例17】 對稱矩陣的相似變換 127 4.4.9 【實(shí)例18】 一般實(shí)矩陣相似變換 129 4.5 矩陣特征值的計算 130 4.5.1 [算法32] 求上Hessen-Burg矩陣全部特征值的QR方法 130 4.5.2 [算法33] 求對稱三對角陣的全部特征值 137 4.5.3 [算法34] 求對稱矩陣特征值的雅可比法 143 4.5.4 [算法35] 求對稱矩陣特征值的雅可比過關(guān)法 147 4.5.5 【實(shí)例19】 求上Hessen-Burg矩陣特征值 151 4.5.6 【實(shí)例20】 分別用兩種雅克比法求對稱矩陣特征值 152 第5章 線性代數(shù)方程組的求解 154 5.1 高斯消去法 154 5.1.1 [算法36] 求解復(fù)系數(shù)方程組的全選主元高斯消去法 155 5.1.2 [算法37] 求解實(shí)系數(shù)方程組的全選主元高斯消去法 160 5.1.3 [算法38] 求解復(fù)系數(shù)方程組的全選主元高斯-約當(dāng)消去法 163 5.1.4 [算法39] 求解實(shí)系數(shù)方程組的全選主元高斯-約當(dāng)消去法 168 5.1.5 [算法40] 求解大型稀疏系數(shù)矩陣方程組的高斯-約當(dāng)消去法 171 5.1.6 [算法41] 求解三對角線方程組的追趕法 174 5.1.7 [算法42] 求解帶型方程組的方法 176 5.1.8 【實(shí)例21】 解線性實(shí)系數(shù)方程組 179 5.1.9 【實(shí)例22】 解線性復(fù)系數(shù)方程組 180 5.1.10 【實(shí)例23】 解三對角線方程組 182 5.2 矩陣分解法 184 5.2.1 [算法43] 求解對稱方程組的LDL分解法 184 5.2.2 [算法44] 求解對稱正定方程組的Cholesky分解法 186 5.2.3 [算法45] 求解線性最小二乘問題的QR分解法 188 5.2.4 【實(shí)例24】 求解對稱正定方程組 191 5.2.5 【實(shí)例25】 求解線性最小二乘問題 192 5.3 迭代方法 193 5.3.1 [算法46] 病態(tài)方程組的求解 193 5.3.2 [算法47] 雅克比迭代法 197 5.3.3 [算法48] 高斯-塞德爾迭代法 200 5.3.4 [算法49] 超松弛方法 203 5.3.5 [算法50] 求解對稱正定方程組的共軛梯度方法 205 5.3.6 [算法51] 求解托伯利茲方程組的列文遜方法 209 5.3.7 【實(shí)例26】 解病態(tài)方程組 214 5.3.8 【實(shí)例27】 用迭代法解方程組 215 5.3.9 【實(shí)例28】 求解托伯利茲方程組 217 第6章 非線性方程與方程組的求解 219 6.1 非線性方程求根的基本過程 219 6.1.1 確定非線性方程實(shí)根的初始近似值或根的所在區(qū)間 219 6.1.2 求非線性方程根的精確解 221 6.2 求非線性方程一個實(shí)根的方法 221 6.2.1 [算法52] 對分法 221 6.2.2 [算法53] 牛頓法 223 6.2.3 [算法54] 插值法 226 6.2.4 [算法55] 埃特金迭代法 229 6.2.5 【實(shí)例29】 用對分法求非線性方程組的實(shí)根 232 6.2.6 【實(shí)例30】 用牛頓法求非線性方程組的實(shí)根 233 6.2.7 【實(shí)例31】 用插值法求非線性方程組的實(shí)根 235 6.2.8 【實(shí)例32】 用埃特金迭代法求非線性方程組的實(shí)根 237 6.3 求實(shí)系數(shù)多項(xiàng)式方程全部根的方法 238 6.3.1 [算法56] QR方法 238 6.3.2 【實(shí)例33】 用QR方法求解多項(xiàng)式的全部根 240 6.4 求非線性方程組一組實(shí)根的方法 241 6.4.1 [算法57] 梯度法 241 6.4.2 [算法58] 擬牛頓法 244 6.4.3 【實(shí)例34】 用梯度法計算非線性方程組的一組實(shí)根 250 6.4.4 【實(shí)例35】 用擬牛頓法計算非線性方程組的一組實(shí)根 252 第7章 代數(shù)插值法 254 7.1 拉格朗日插值法 254 7.1.1 [算法59] 線性插值 255 7.1.2 [算法60] 二次拋物線插值 256 7.1.3 [算法61] 全區(qū)間插值 259 7.1.4 【實(shí)例36】 拉格朗日插值 262 7.2 埃爾米特插值 263 7.2.1 [算法62] 埃爾米特不等距插值 263 7.2.2 [算法63] 埃爾米特等距插值 267 7.2.3 【實(shí)例37】 埃爾米特插值法 270 7.3 埃特金逐步插值 271 7.3.1 [算法64] 埃特金不等距插值 272 7.3.2 [算法65] 埃特金等距插值 275 7.3.3 【實(shí)例38】 埃特金插值 278 7.4 光滑插值 279 7.4.1 [算法66] 光滑不等距插值 279 7.4.2 [算法67] 光滑等距插值 283 7.4.3 【實(shí)例39】 光滑插值 286 7.5 三次樣條插值 287 7.5.1 [算法68] 第一類邊界條件的三次樣條函數(shù)插值 287 7.5.2 [算法69] 第二類邊界條件的三次樣條函數(shù)插值 292 7.5.3 [算法70] 第三類邊界條件的三次樣條函數(shù)插值 296 7.5.4 【實(shí)例40】 樣條插值法 301 7.6 連分式插值 303 7.6.1 [算法71] 連分式插值 304 7.6.2 【實(shí)例41】 驗(yàn)證連分式插值的函數(shù) 308 第8章 數(shù)值積分法 309 8.1 變步長求積法 310 8.1.1 [算法72] 變步長梯形求積法 310 8.1.2 [算法73] 自適應(yīng)梯形求積法 313 8.1.3 [算法74] 變步長辛卜生求積法 316 8.1.4 [算法75] 變步長辛卜生二重積分方法 318 8.1.5 [算法76] 龍貝格積分 322 8.1.6 【實(shí)例42】 變步長積分法進(jìn)行一重積分 325 8.1.7 【實(shí)例43】 變步長辛卜生積分法進(jìn)行二重積分 326 8.2 高斯求積法 328 8.2.1 [算法77] 勒讓德-高斯求積法 328 8.2.2 [算法78] 切比雪夫求積法 331 8.2.3 [算法79] 拉蓋爾-高斯求積法 334 8.2.4 [算法80] 埃爾米特-高斯求積法 336 8.2.5 [算法81] 自適應(yīng)高斯求積方法 337 8.2.6 【實(shí)例44】 有限區(qū)間高斯求積法 342 8.2.7 【實(shí)例45】 半無限區(qū)間內(nèi)高斯求積法 343 8.2.8 【實(shí)例46】 無限區(qū)間內(nèi)高斯求積法 345 8.3 連分式法 346 8.3.1 [算法82] 計算一重積分的連分式方法 346 8.3.2 [算法83] 計算二重積分的連分式方法 350 8.3.3 【實(shí)例47】 連分式法進(jìn)行一重積分 354 8.3.4 【實(shí)例48】 連分式法進(jìn)行二重積分 355 8.4 蒙特卡洛法 356 8.4.1 [算法84] 蒙特卡洛法進(jìn)行一重積分 356 8.4.2 [算法85] 蒙特卡洛法進(jìn)行二重積分 358 8.4.3 【實(shí)例49】 一重積分的蒙特卡洛法 360 8.4.4 【實(shí)例50】 二重積分的蒙特卡洛法 361 第9章 常微分方程(組)初值問題的求解 363 9.1 歐拉方法 364 9.1.1 [算法86] 定步長歐拉方法 364 9.1.2 [算法87] 變步長歐拉方法 366 9.1.3 [算法88] 改進(jìn)的歐拉方法 370 9.1.4 【實(shí)例51】 歐拉方法求常微分方程數(shù)值解 372 9.2 龍格-庫塔方法 376 9.2.1 [算法89] 定步長龍格-庫塔方法 376 9.2.2 [算法90] 變步長龍格-庫塔方法 379 9.2.3 [算法91] 變步長基爾方法 383 9.2.4 【實(shí)例52】 龍格-庫塔方法求常微分方程的初值問題 386 9.3 線性多步法 390 9.3.1 [算法92] 阿當(dāng)姆斯預(yù)報校正法 390 9.3.2 [算法93] 哈明方法 394 9.3.3 [算法94] 全區(qū)間積分的雙邊法 399 9.3.4 【實(shí)例53】 線性多步法求常微分方程組初值問題 401 第10章 擬合與逼近 405 10.1 一元多項(xiàng)式擬合 405 10.1.1 [算法95] 最小二乘擬合 405 10.1.2 [算法96] 最佳一致逼近的里米茲方法 412 10.1.3 【實(shí)例54】 一元多項(xiàng)式擬合 417 10.2 矩形區(qū)域曲面擬合 419 10.2.1 [算法97] 矩形區(qū)域最小二乘曲面擬合 419 10.2.2 【實(shí)例55】 二元多項(xiàng)式擬合 428 第11章 特殊函數(shù) 430 11.1 連分式級數(shù)和指數(shù)積分 430 11.1.1 [算法98] 連分式級數(shù)求值 430 11.1.2 [算法99] 指數(shù)積分 433 11.1.3 【實(shí)例56】 連分式級數(shù)求值 436 11.1.4 【實(shí)例57】 指數(shù)積分求值 438 11.2 伽馬函數(shù) 439 11.2.1 [算法100] 伽馬函數(shù) 439 11.2.2 [算法101] 貝塔函數(shù) 441 11.2.3 [算法102] 階乘 442 11.2.4 【實(shí)例58】 伽馬函數(shù)和貝塔函數(shù)求值 443 11.2.5 【實(shí)例59】 階乘求值 444 11.3 不完全伽馬函數(shù) 445 11.3.1 [算法103] 不完全伽馬函數(shù) 445 11.3.2 [算法104] 誤差函數(shù) 448 11.3.3 [算法105] 卡方分布函數(shù) 450 11.3.4 【實(shí)例60】 不完全伽馬函數(shù)求值 451 11.3.5 【實(shí)例61】 誤差函數(shù)求值 452 11.3.6 【實(shí)例62】 卡方分布函數(shù)求值 453 11.4 不完全貝塔函數(shù) 454 11.4.1 [算法106] 不完全貝塔函數(shù) 454 11.4.2 [算法107] 學(xué)生分布函數(shù) 457 11.4.3 [算法108] 累積二項(xiàng)式分布函數(shù) 458 11.4.4 【實(shí)例63】 不完全貝塔函數(shù)求值 459 11.5 貝塞爾函數(shù) 461 11.5.1 [算法109] 第一類整數(shù)階貝塞爾函數(shù) 461 11.5.2 [算法110] 第二類整數(shù)階貝塞爾函數(shù) 466 11.5.3 [算法111] 變型第一類整數(shù)階貝塞爾函數(shù) 469 11.5.4 [算法112] 變型第二類整數(shù)階貝塞爾函數(shù) 473 11.5.5 【實(shí)例64】 貝塞爾函數(shù)求值 476 11.5.6 【實(shí)例65】 變型貝塞爾函數(shù)求值 477 11.6 Carlson橢圓積分 479 11.6.1 [算法113] 第一類橢圓積分 479 11.6.2 [算法114] 第一類橢圓積分的退化形式 481 11.6.3 [算法115] 第二類橢圓積分 483 11.6.4 [算法116] 第三類橢圓積分 486 11.6.5 【實(shí)例66】 第一類勒讓德橢圓函數(shù)積分求值 490 11.6.6 【實(shí)例67】 第二類勒讓德橢圓函數(shù)積分求值 492 第12章 極值問題 494 12.1 一維極值求解方法 494 12.1.1 [算法117] 確定極小值點(diǎn)所在的區(qū)間 494 12.1.2 [算法118] 一維黃金分割搜索 499 12.1.3 [算法119] 一維Brent方法 502 12.1.4 [算法120] 使用一階導(dǎo)數(shù)的Brent方法 506 12.1.5 【實(shí)例68】 使用黃金分割搜索法求極值 511 12.1.6 【實(shí)例69】 使用Brent法求極值 513 12.1.7 【實(shí)例70】 使用帶導(dǎo)數(shù)的Brent法求極值 515 12.2 多元函數(shù)求極值 517 12.2.1 [算法121] 不需要導(dǎo)數(shù)的一維搜索 517 12.2.2 [算法122] 需要導(dǎo)數(shù)的一維搜索 519 12.2.3 [算法123] Powell方法 522 12.2.4 [算法124] 共軛梯度法 525 12.2.5 [算法125] 準(zhǔn)牛頓法 531 12.2.6 【實(shí)例71】 驗(yàn)證不使用導(dǎo)數(shù)的一維搜索 536 12.2.7 【實(shí)例72】 用Powell算法求極值 537 12.2.8 【實(shí)例73】 用共軛梯度法求極值 539 12.2.9 【實(shí)例74】 用準(zhǔn)牛頓法求極值 540 12.3 單純形法 542 12.3.1 [算法126] 求無約束條件下n維極值的單純形法 542 12.3.2 [算法127] 求有約束條件下n維極值的單純形法 548 12.3.3 [算法128] 解線性規(guī)劃問題的單純形法 556 12.3.4 【實(shí)例75】 用單純形法求無約束條件下N維的極值 568 12.3.5 【實(shí)例76】 用單純形法求有約束條件下N維的極值 569 12.3.6 【實(shí)例77】 求解線性規(guī)劃問題 571 第13章 隨機(jī)數(shù)產(chǎn)生與統(tǒng)計描述 574 13.1 均勻分布隨機(jī)序列 574 13.1.1 [算法129] 產(chǎn)生0到1之間均勻分布的一個隨機(jī)數(shù) 574 13.1.2 [算法130] 產(chǎn)生0到1之間均勻分布的隨機(jī)數(shù)序列 576 13.1.3 [算法131] 產(chǎn)生任意區(qū)間內(nèi)均勻分布的一個隨機(jī)整數(shù) 577 13.1.4 [算法132] 產(chǎn)生任意區(qū)間內(nèi)均勻分布的隨機(jī)整數(shù)序列 578 13.1.5 【實(shí)例78】 產(chǎn)生0到1之間均勻分布的隨機(jī)數(shù)序列 580 13.1.6 【實(shí)例79】 產(chǎn)生任意區(qū)間內(nèi)均勻分布的隨機(jī)整數(shù)序列 581 13.2 正態(tài)分布隨機(jī)序列 582 13.2.1 [算法133] 產(chǎn)生任意均值與方差的正態(tài)分布的一個隨機(jī)數(shù) 582 13.2.2 [算法134] 產(chǎn)生任意均值與方差的正態(tài)分布的隨機(jī)數(shù)序列 585 13.2.3 【實(shí)例80】 產(chǎn)生任意均值與方差的正態(tài)分布的一個隨機(jī)數(shù) 587 13.2.4 【實(shí)例81】 產(chǎn)生任意均值與方差的正態(tài)分布的隨機(jī)數(shù)序列 588 13.3 統(tǒng)計描述 589 13.3.1 [算法135] 分布的矩 589 13.3.2 [算法136] 方差相同時的t分布檢驗(yàn) 591 13.3.3 [算法137] 方差不同時的t分布檢驗(yàn) 594 13.3.4 [算法138] 方差的F檢驗(yàn) 596 13.3.5 [算法139] 卡方檢驗(yàn) 599 13.3.6 【實(shí)例82】 計算隨機(jī)樣本的矩 601 13.3.7 【實(shí)例83】 t分布檢驗(yàn) 602 13.3.8 【實(shí)例84】 F分布檢驗(yàn) 605 13.3.9 【實(shí)例85】 檢驗(yàn)卡方檢驗(yàn)的算法 607 第14章 查找 609 14.1 基本查找 609 14.1.1 [算法140] 有序數(shù)組的二分查找 609 14.1.2 [算法141] 無序數(shù)組同時查找最大和最小的元素 611 14.1.3 [算法142] 無序數(shù)組查找第M小的元素 613 14.1.4 【實(shí)例86】 基本查找 615 14.2 結(jié)構(gòu)體和磁盤文件的查找 617 14.2.1 [算法143] 無序結(jié)構(gòu)體數(shù)組的順序查找 617 14.2.2 [算法144] 磁盤文件中記錄的順序查找 618 14.2.3 【實(shí)例87】 結(jié)構(gòu)體數(shù)組和文件中的查找 619 14.3 哈希查找 622 14.3.1 [算法145] 字符串哈希函數(shù) 622 14.3.2 [算法146] 哈希函數(shù) 626 14.3.3 [算法147] 向哈希表中插入元素 628 14.3.4 [算法148] 在哈希表中查找元素 629 14.3.5 [算法149] 在哈希表中刪除元素 631 14.3.6 【實(shí)例88】 構(gòu)造哈希表并進(jìn)行查找 632 第15章 排序 636 15.1 插入排序 636 15.1.1 [算法150] 直接插入排序 636 15.1.2 [算法151] 希爾排序 637 15.1.3 【實(shí)例89】 插入排序 639 15.2 交換排序 641 15.2.1 [算法152] 氣泡排序 641 15.2.2 [算法153] 快速排序 642 15.2.3 【實(shí)例90】 交換排序 644 15.3 選擇排序 646 15.3.1 [算法154] 直接選擇排序 646 15.3.2 [算法155] 堆排序 647 15.3.3 【實(shí)例91】 選擇排序 650 15.4 線性時間排序 651 15.4.1 [算法156] 計數(shù)排序 651 15.4.2 [算法157] 基數(shù)排序 653 15.4.3 【實(shí)例92】 線性時間排序 656 15.5 歸并排序 657 15.5.1 [算法158] 二路歸并排序 658 15.5.2 【實(shí)例93】 二路歸并排序 660 第16章 數(shù)學(xué)變換與濾波 662 16.1 快速傅里葉變換 662 16.1.1 [算法159] 復(fù)數(shù)據(jù)快速傅里葉變換 662 16.1.2 [算法160] 復(fù)數(shù)據(jù)快速傅里葉逆變換 666 16.1.3 [算法161] 實(shí)數(shù)據(jù)快速傅里葉變換 669 16.1.4 【實(shí)例94】 驗(yàn)證傅里葉變換的函數(shù) 671 16.2 其他常用變換 674 16.2.1 [算法162] 快速沃爾什變換 674 16.2.2 [算法163] 快速哈達(dá)瑪變換 678 16.2.3 [算法164] 快速余弦變換 682 16.2.4 【實(shí)例95】 驗(yàn)證沃爾什變換和哈達(dá)瑪?shù)暮瘮?shù) 684 16.2.5 【實(shí)例96】 驗(yàn)證離散余弦變換的函數(shù) 687 16.3 平滑和濾波 688 16.3.1 [算法165] 五點(diǎn)三次平滑 689 16.3.2 [算法166] α-β-γ濾波 690 16.3.3 【實(shí)例97】 驗(yàn)證五點(diǎn)三次平滑 692 16.3.4 【實(shí)例98】 驗(yàn)證α-β-γ濾波算法 693
標(biāo)簽: C 算法 附件 源代碼
上傳時間: 2015-06-29
上傳用戶:cbsdukaf
硬件描述語言Verilog 清華大學(xué)出版社 劉明業(yè) 蔣敬旗等譯 學(xué)習(xí)Verilog的一本很好的資料
標(biāo)簽: Verilog
上傳時間: 2016-03-18
上傳用戶:qiaozhonglin
對于學(xué)習(xí)DSP重要的是理清外設(shè)的工作構(gòu)架,相應(yīng)的寄存器如何設(shè)置,沒有必要對寄存器花太多的時間去研究,用的時候能找到(寄存器的名稱都是英文的縮寫,很好理解的)。學(xué)習(xí)DSP,先找本中文教材入個門,之后你會發(fā)現(xiàn)好多地方、尤其是真正要用的,往往也是最復(fù)雜的地方書上都找不到,更談不上做什么項(xiàng)目了,這時候就要開始深入研究Data Sheet,以及官網(wǎng)的源代碼示例,有了之前的中文教材基礎(chǔ)看起來就快多了;
標(biāo)簽: LLC的設(shè)計步驟(郭春明)OK
上傳時間: 2016-07-02
上傳用戶:xiaohuihui1991
何愷明09年單幅圖像去霧算法,最佳論文獎
標(biāo)簽: 圖像 去霧
上傳時間: 2016-09-05
上傳用戶:wincoder
由慣性導(dǎo)航原理的特性可知 ,純慣性無 阻尼航 姿 系統(tǒng) 的誤差將 出現(xiàn) 明顯的周期 性振蕩 ,并 隨時 間發(fā) 散 ,如水平姿態(tài)誤差體現(xiàn)出傅科周期調(diào)制舒勒周期振蕩 ,方位誤差體 現(xiàn)出地球周 期振蕩 。 若在 水平 回路 中加 人 阻尼 網(wǎng)絡(luò) ,可使其舒勒周期振蕩衰減 ,傅科周期振蕩也將 隨之 消失 ,再加入方 位阻尼 ,就能完 成內(nèi)全 阻尼網(wǎng) 絡(luò) 的設(shè)計 。 文章將平 臺精對準(zhǔn) 中羅經(jīng) 回路的思想引入到捷聯(lián)航姿系統(tǒng) 中,并 通過改變原有航姿算法 以達(dá) 到內(nèi) 全阻尼 的目的,最后 的數(shù) 字仿 真結(jié)果表 明 ,該新算法可使航 姿系統(tǒng)不依賴 任何 外部信息就 能使姿態(tài) 精度得 到 提 高
標(biāo)簽: 回路 中的應(yīng)用 航姿
上傳時間: 2016-10-23
上傳用戶:260970449
機(jī)器人操作的數(shù)學(xué)導(dǎo)論 原書名:A Mathematical Introduction To Robotic Manipula-tion 原著由美國CRC出版社于1994年出版。是關(guān)于機(jī)器人操作理論的一本專著。作者:[美]理查德.摩雷 [中]李澤湘 [美]夏恩卡.薩思特里 譯者:徐衛(wèi)良 錢瑞明 本書在綜合大量的技術(shù)文獻(xiàn)資料基礎(chǔ)上,結(jié)合作者從事的研究工作,從數(shù)學(xué)角度系統(tǒng)地論述了機(jī)器人操作的運(yùn)動學(xué)、動力學(xué)、控制及運(yùn)動規(guī)劃。本書內(nèi)容反映了近年來機(jī)器人領(lǐng)域的主要研究成果。本書共九章,包括緒論、剛體運(yùn)動、機(jī)器人運(yùn)動學(xué)、機(jī)器人動力學(xué)及控制、多指手運(yùn)動學(xué)、機(jī)器人手的動力學(xué)及控制、機(jī)器人系統(tǒng)的非完整約束、非完整運(yùn)動規(guī)劃和機(jī)器人操作的研究展望。第二章至第八章含有豐富的實(shí)例,并附有小結(jié)和大量的習(xí)題。本書可作為有關(guān)專業(yè)研究生的教材,也可供從事機(jī)器、自動控制等領(lǐng)域工作的科研和工程技術(shù)人員參考。
上傳時間: 2016-11-14
上傳用戶:風(fēng)塵尋真
華大對于因使用本文件中列明的本公司產(chǎn)品而引起的,對第三方的專利、版權(quán)以及其它知 識產(chǎn)權(quán)的侵權(quán)行為概不負(fù)責(zé)。本文件登載的內(nèi)容不應(yīng)視為華大對其他公司或個人所擁有的 專利、版權(quán)以及其它知識產(chǎn)權(quán)做出任何明示或默示的許可及授權(quán)。
標(biāo)簽: 18B B20 DS 18 20 測溫系統(tǒng) 中的作用
上傳時間: 2017-09-12
上傳用戶:lidabingqi
介紹了基于 0# 公司提供的 1)’ 芯片 0")/-.2$34.- 的自適應(yīng)有源噪聲控制(56789: ;<8=: 6<;7><?,,@$)系統(tǒng),給出了系統(tǒng)的工作原理及其硬件結(jié)構(gòu),并詳細(xì)說明了基于平均的 *+,*, (*8?7:>:A B C ,A5D789: *8?7:>8;E F87G ,9:>5E8;E)算法,給出了程序流程圖和實(shí)驗(yàn)結(jié)果。通過實(shí)驗(yàn)證 明,該系統(tǒng)有較好的降噪效果
上傳時間: 2017-12-05
上傳用戶:xiaoding
蟲蟲下載站版權(quán)所有 京ICP備2021023401號-1