雙向DC/DC變換器(Bi-directionalDC/DCconverters)是能夠根據需要調節能量雙向傳輸的直流/直流變換器。隨著科技的發展,雙向DC/DC變換器的應用需求越來越多,正逐步應用到無軌電車、地鐵、列車、電動車等直流電機驅動系統,直流不間斷電源系統,航天電源等場合。一方面,雙向DC/DC變換器為這些系統提供能量,另一方面,又使可回收能量反向給供電端充電,從而節約能量。 大多數雙向DC/DC變換器采用復雜的輔助網絡來實現軟開關技術,本文所研究的Buck/Boost雙向的DC/DC變換器從拓撲上解決器件軟開關的問題;由于Buck/Boost雙向DC/DC變換器的電流紋波較大,這會帶來嚴重的電磁干擾,本文結合Buck/Boost雙向DC/DC變換器拓撲與磁耦合技術使電感電流紋波減小;由于在同一頻率下不同負載時電流紋波不同,本文在控制時根據負載改變PWM頻率,從而使輕載時的電流紋波均較小。 本文所研究的雙向DC/DC變換器采用DSP處理器進行控制,其原因在于:目前沒有專門用于控制該Buck/Boost雙向DC/DC變換器的控制芯片,而DSP具有多路的高分辨率PWM,通過對DSP寄存器的配置可以實現Buck/Boost雙向DC/DC變換器的控制PWM;DSP具有多路高速的A/D轉換接口,并可以通過配合PWM完成對反饋采樣,具備一定的濾波功能。 本文所研究的數字雙向DC/DC變換器實現了在Buck模式下功率MOSFET的零電壓開通及零電壓關斷,電感電流的交迭使其電感輸出端電流紋波明顯變小,輕載時PWM頻率的提升也使得電流紋波變小。
上傳時間: 2013-06-08
上傳用戶:cy_ewhat
逆變電源的發展是和電力電子器件的發展聯系在一起的,隨著現代電力電子技術的迅猛發展,逆變電源在許多領域的應用也越來越廣泛,同時對逆變電源輸出電壓波形質量提出了越來越高的要求。逆變電源輸出波形質量主要包括三個方面:一是輸出穩定精度高;二是動態性能好;三是帶負載適應性強。因此開發既具有結構簡單,又具有優良動、靜態性能和負載適應性的逆變電源,一直是研究者在逆變電源方面追求的目標。本文對逆變電源三閉環控制方案、輸出相位控制、逆變電源數字化控制系統進行研究,以期得到具有高品質和高可靠性的逆變電源。 本文研究了單相全橋逆變電源與三相橋式逆變電源主電路參數,包括逆變器、吸收電路、驅動電路、變壓器和濾波器,并對逆變電源變壓器的偏磁產生原因進行了深入分析,最后給出了有效的抗偏磁措施。針對三相橋式逆變電源通常不能保證三相電壓輸出平衡,研究了一種可以帶不平衡負載的三相逆變電源。研究了逆變電源的控制原理,建立了逆變電源系統動態模型,在此基礎上對逆變電源的各種控制方案的性能進行了對比研究,從而確定了一種新穎的高性能逆變電源多閉環控制方案。另外,針對逆變電源輸出相位存在固有滯后問題,采用了一種利用電壓瞬時值內環對逆變電源滯后的相角進行補償控制的策略,分析表明上述控制策略雖然有效,但無法做到輸出相角穩態無差,對此,提出一種移相控制方案設想,相當于在原多環控制方案的基礎上加了一個相位控制環。這樣可以使逆變電源輸出相位誤差得到有效的補償,輸出相位精度更高。文章設計了逆變電源數字控制系統,采用TMS320LF2407A控制產生SPWM波,給出控制系統DSP程序運行流程圖,并用DSP對其進行了實現數字化。多環反饋控制系統的采用,使系統具有優異的穩態特性、動態特性和對非線性負載的適應性,使逆變電源的性能得到有效提高。
上傳時間: 2013-04-24
上傳用戶:tianjinfan
繞組勵磁同步電機具有功率因數可調、效率高等優點,在工業大功率場合獲得了廣泛應用,因此研究和開發高性能的繞組勵磁同步電機驅動系統具有重大的經濟價值和社會效益。目前開發高性能繞組勵磁同步電機驅動系統所采用的控制方案主要有兩種:一種是直接轉矩控制(DTFC);另一種是磁場定向矢量控制(FOC)。繞組勵磁同步電機的矢量控制策略具有控制結構簡單,物理概念清晰,電流、轉矩波動小,轉速響應迅速,易實現數字控制等優點。因此,在交流傳動領域中,越來越受到學者的關注。但是,無論在國內還是國外,交直交型繞組勵磁同步電機矢量控制系統的研究還缺乏全面深入的理論研究,還沒有建造起矢量控制系統的理論體系構架。本文對繞組勵磁同步電機矢量控制系統進行了初步的理論探討,并進行了詳細的實踐研究,為以后更深入、廣泛地研究此系統,打好堅實的基礎。本論文主要研究內容如下: @@ 通過廣泛的查找文獻,對幾種常見的同步電機傳動系統進行了綜述,分析了同步電機變頻調速原理,在此基礎上,講述了無傳感器技術在同步電機中的應用現狀。無傳感器技術主要有兩大類:基于基波量的檢測方法和基于外加信號的激勵法。隨后,對轉子初始位置的估計進行了綜述,其方法有:基于電機定子鐵芯飽和效應的轉子位置估計,高頻信號注入法,基于定子繞組感應電壓的估計法和基于相電感計算法等。繞組勵磁同步電機轉子初始位置估計的研究還很少。 @@ 對繞組勵磁同步電機矢量控制的理論進行了全面深入地研究,建立起矢量控制的理論體系構架。 @@ 首先,基于磁勢等效原理,將三相靜止交流信號等效變換為兩相旋轉直流信號,將交流電機等效為直流電機進行控制。在Clarke變換和Park變換的基礎上,得到凸極同步電機轉子磁場定向的電壓矩陣方程、功率方程和運動方程。根據上述方程,繪出dq軸的等值電路及矢量圖,得到狀態空間描述的dq軸數學模型。 @@ 其次,根據模型參考自適應原理,對同步電機轉速進行估計。忽略同步電機d軸阻尼繞組的作用,取同步轉速為零,得到同步電機αβ靜止坐標系下 的數學模型。將不含有轉子轉速信息的方程作為參考模型,將含有轉速參數的方程作為可調模型,根據波波夫超穩定性和正性原理,對轉子轉速進行估計。@@ 最后,根據模型參考自適應估計的轉子轉速,設計磁通觀測器來估計轉子磁通,實現磁通反饋閉環控制。磁通觀測器采用降維觀測器,僅對轉子磁通分量進行重構,并通過極點配置算法,合理配置觀測器的極點,使觀測器滿足系統的性能指標,達到磁通觀測的目的。 @@ 新穎的空間矢量脈寬調制算法。從空間矢量的基本概念入手,深入分析了定子三相對稱電壓與空間電壓矢量之間的關系。由三相電壓源型逆變器輸出電壓波形得到六個有效開關狀態矢量,這六個開關矢量和兩個零矢量合成一組等幅不同相的電壓空間矢量,去逼近圓形旋轉磁場。其次,根據空間電壓矢量所在的扇區,選擇相鄰有效開關矢量,在伏秒平衡的法則下,計算各有效開關矢量的作用時間。并且,探討了扇區判斷和扇區過渡問題,定性分析了空間矢量脈寬調制(SVPWM)的性能。最后,根據每個扇區中開關矢量作用時間,采用軟件構造法,在TMS320LF2407A硬件上實現了SVPWM。實驗結果表明,該算法簡單易實現,能夠有效的提高直流母線的電壓利用率,具有在低頻運行穩定,逆變器輸出電流正弦度好等優點。 @@ 空間矢量過調制算法的研究。在上述線性調制的基礎上,提出一種基于電壓空間矢量的過調制方法。過調制區域根據調制度分成兩種不同的模式,分別為模式Ⅰ(0.907
上傳時間: 2013-07-25
上傳用戶:gaorxchina
本文介紹了埋弧焊的特點、發展過程、國內外的研究現狀;分析了軟開關逆變式主回路的優點、模擬電路控制系統和數字化控制系統的優缺點,指出數字化控制是逆變埋弧焊機控制的發展方向;對埋弧焊接工作原理和埋弧焊機控制系統進行分析,介紹了交流方波埋弧焊的優點;論述了變動送絲電弧控制系統的原理及影響因素,并且分析了變動送絲情況下焊接電弧的穩定性,為逆變式交流方波埋弧焊系統的設計提供了理論依據。 在分析傳統交流方波埋弧焊主回路的基礎上設計了主回路結構,對主回路中一次、二次逆變回路的軟開關工作方式進行分析并做了簡單仿真。IGBT是逆變電源的核心部件,文中論述了IGBT功率器件的選型和各種保護措施以保證系統的可靠工作。焊機工作發熱量很大,本文介紹了整機和關鍵器件的熱設計。 數字化控制方式是逆變埋弧焊機控制的發展方向,本文采用“MCU+DSP”的控制結構,對埋弧焊的整個焊接過程進行精確控制。文中詳細介紹了主控制板的設計思路和電源、電流與電壓反饋、控制芯片最小系統、通信與保護工作電路。焊機的工作中,各種干擾不可避免,對各種可能干擾分析的基礎上在硬件電路設計和PCB板的制作中采取了相應的抗干擾措施。軟件設計是焊接穩定進行的關鍵因素,文中介紹了控制系統中關鍵步驟的軟件設計思路和流程并在軟件的實現中采用抗干擾措施。 最后,對采用本控制系統的埋弧焊機進行初步實驗,結果表明本文所設計的埋弧焊機控制系統能夠滿足逆變埋弧自動焊的要求,具有電路簡單,控制精度高,抗干擾能力強、操作方便、工作穩定可靠等優點,提高了焊機的綜合性能及自動化程度。 本課題所設計的逆變式交流方波埋弧焊電源具有良好的輸出特性和控制性能,可滿足埋弧自動焊和手工焊的要求。采用交流方波的焊接波形、對焊接整個過程進行實時軟件控制,電弧穩定,焊接效果好。 關鍵詞:埋弧焊;交流方波;逆變;軟開關
上傳時間: 2013-06-08
上傳用戶:mingaili888
隨著生活水平的提高,人們越來越關注自己的身體健康,血壓是反映人體生理狀況的最重要指標之一,正常的血壓是保證身體健康的重要條件。 另外血壓也是重癥病人監護的重要指標,準確、及時地監測血壓,對于了解病情、診斷疾病和保障危重病人安全都極為重要。因此,研制高性能的血壓監控系統具有重要的現實意義。 針對以上所述,本文提出了一種采用遠程血壓監控系統的解決方案,它融合計算機技術、測控技術和網絡通訊技術為一體,使電子血壓系統實現網絡化。本系統將采集到的血壓信息經處理后顯示到液晶屏上,同時將此信息以TCP/IP的方式發送到網絡上,這就是本設計的目的所在。 本論文在開始介紹了人體生理信號的特點及其測量條件之后,詳細研究分析了血壓測量原理以及舒張壓和收縮壓的判別。論文的重點放在系統硬件和軟件兩個方面的設計。在硬件方面,以ARM Cortex-M3內核的處理器LM3S8962作為控制器(內部集成有A/D轉換器和以太網控制器等),使得硬件系統的設計簡單化。整個硬件系統電路由六部分構成:處理器LM3S8962最小系統電路;電源模塊:JTAG接口電路:血壓檢測模塊;液晶顯示模塊;網絡接口。其中,血壓檢測模塊是整個系統設計的關鍵部分和難點部分,它主要是將袖壓的直流部分和交流部分分離出來送到A/D轉換器。軟件方面,這個部分是第四章的系統軟件的設計,首先把實時操作系統μC/OS-Ⅱ移植到處理器LM3S8962上,然后講解了應用程序的設計(由三個部分組成),分別是A/D轉換處理程序設計、液晶顯示程序設計和網絡通訊程序設計。論文的最后對系統的軟硬件調試做了簡單的介紹以及全文的總結。 關鍵詞:TCP/IP 示波法 舒張壓 收縮壓 μc/OS-Ⅱ
上傳時間: 2013-06-17
上傳用戶:yph853211
目前,小波分析在信息技術和其他學科方面的應用是眾多科技工作者關心的課題。在理論方面,新觀點、新方法不斷涌現。本文旨在完善小波的基本理論,對原有的小波去噪方法作進一步的改進。 經典的信號處理方法,例如傅立葉變換、短時傅立葉變換等具有局限性,因而限定了它們的應用范圍。小波分析作為一種全新的信號處理方法,它將信號中各種不同的頻率成分分解到互不重疊的頻帶上,為信號濾波、信噪分離和特征提取提供了有效途徑,特別在信號去噪方面顯出了獨特的優勢。本文介紹了經典的去噪方法,并對其適用范圍和效果進行了分析和比較。并且,討論了小波分析的基本理論,介紹了連續小波變換、離散小波變換和小波變換的快速分解與重構算法,最后研究了小波基的數學特性,分析了它們對實際應用的影響和作用。進而,介紹了小波的幾種去噪方法:小波變換高頻系數置零去噪方法、小波變換模極大值去噪方法、小波閾值去噪方法、小波空域相關性去噪方法。用小波變換將高頻系數強制置零去噪的方法是比較方便的,但它的不足之處是經將高頻系數強制置零去噪后重構的信號會使信號丟失一些細節,且小波基的選擇亦有相當的難度,只有靠經驗來確定,不過比傳統的濾波方法所得的效果還是要好。對于小波變換模極大值去噪的原理,分析了去噪過程中幾個參數的選取問題,并給出了一些選取依據;對小波閾值去噪方法的幾個關鍵問題進行了詳細討論。對閾值去噪進行了改進,利用均值逼近與閾值去噪相結合的方法來實現信號的處理,并通過實驗仿真實現。實驗結果表明該方法提高了信噪比,去噪效果優于單獨應用閾值去噪的方法。 在空域相關去噪算法的基礎上,進行了改進,利用閾值濾波與相關去噪算法相結合的一種組合去噪算法,仿真試驗結果表明,由該算法濾波之后得到的小波系數不僅連續性好,準確率高,而且易于重構信號。 本文分別對這四種方法進行了算法分析比較,通過實驗仿真來實現,并對實驗結果進行了分析。實驗仿真結果表明了利用小波分析理論對信號去噪的可行性和有效性。 關鍵詞:小波分析,信號去噪,閾值,均值逼近,空域相關
上傳時間: 2013-07-19
上傳用戶:啊颯颯大師的
心音信號是人體最重要的生理信號之一,包含心臟各個部分如心房、心室、大血管、心血管及各個瓣膜功能狀態的大量生理病理信息。心音信號分析與識別是了解心臟和血管狀態的一種不可缺少的手段。本文針對目前該研究領域中存在的分析方法問題和分類識別技術難點展開了深入的研究,內容涉及心音構成的分析、心音信號特征向量的提取、正常心音信號(NM)和房顫(AF)、主動脈回流(AR)、主動脈狹窄(AS)、二尖瓣回流(MR)4種心臟雜音信號的分類識別。本文的工作內容包括以下5個方面: a)心音信號采集與預處理。本文采用自行研制的帶有錄音機功能的聽診器實現對心音信號的采集。通過對心音信號噪聲分析,選用小波降噪作為心音信號的濾波方法。根據實驗分析,選擇Donoho閾值函數結合多級閾值的方法作為心音信號預處理方案。 b)心音信號時頻分析方法。文中采用5種時頻分析方法分別對心音信號進行了時頻譜特性分析,結果表明:不同的時頻分析方法與待分析心音信號的特性有密切關系,即需要在小的交叉項干擾與高的時頻分辨率之間作綜合的考慮。鑒于此,本文提出了一種自適應錐形核時頻(ATF)分析方法,通過實驗驗證該分布能較好地反映心音信號的時頻結構,其性能優于一般錐形核分布(CKD)以及Choi-Williams分布(CWD)、譜圖(SPEC)等固定核時頻分析方法,從而選擇自應錐形核時頻分析方法進行心音信號分析。 c)心音信號特征向量提取。根據對3M Littmann() Stethoscopes[31]數據庫中標準心音信號的時頻分析結果,提取8組特征數據,通過Fihser降維處理方法提取出了實現分類可視化,且最易于分類的心音信號的2維特征向量,作為心音信號分類的特征向量。 d)心音信號分類方法。根據心音信號特征向量組成的散點圖,研究了支持向量機核函數、多分類支持向量機的選取方法,同時,基于分類的目的 性和可信性,本文提出以分類精度最大為判斷準則的核函數參數與松弛變量的優化方法,建立了心音信號分類的支持向量機模型,選取標準數據庫中NM、AF、AR、AS、MR每類心音信號的80組2維特征向量中每類60組數據作為支持向量機的學習樣本,對余下的每類20組數據進行測試,得到每類的分類精度(Ar)均為100%,同時對臨床上采集的與上述4種同類心臟雜音信號和正常心音信號中每類24個心動周期進行分類實測,分類精度分別為:NM、AF、MR的分類精度均為100%,而AR、AS均為95.83%,驗證了該方法的分類有效性。 e)心音信號分析與識別的軟件系統。本文以MATLAB語言的可視化功能實現了心音信號分析與識別的軟件運行平臺構建,可完成對心音信號的讀取、預處理,繪制時-頻、能量特性的三維圖及兩維等高線圖;同時,利用MATLAB與EXCEL的動態鏈接,實現對心音信號分析數據的存儲以及統計功能;最后,通過對心音信號2維特征向量的分析,實現心音信號的自動識別功能。 本文的研究特色主要體現在心音信號特征向量提取的方法以及多分類支持向量機模型的建立兩方面。 綜上所述,本文從理論與實踐兩方面對心音信號進行了深入的研究,主要是采用自適應錐形核時頻分析方法提取心音信號特征向量,根據心音信號特征向量組成的散點圖,建立心音信號分類的支持向量機模型,并對正常心音信號和4種心臟雜音信號進行了分類研究,取得了較為滿意的分類結果,但由于用于分類的心臟雜音信號種類及數據量尚不足,因此,今后的工作重點是采集更多種類的心臟雜音信號,進一步提高心音信號分類精度,使本文研究成果能最終應用于臨床心臟量化聽診。 關鍵詞:心音信號,小波降噪,非平穩信號,心臟雜音,信號處理,時頻分析,自適應,支持向量機
上傳時間: 2013-04-24
上傳用戶:weixiao99
無刷直流電動機利用電子換相器代替了直流電動機的機械電刷和換向器,不但具有直流電機的調速性能,而且體積小、效率高,在許多領域已得到了廣泛應用。采用無位置傳感器控制技術,不但可以克服有位置傳感器的諸多弊端,而且還進一步拓展了無刷直流電動機的應用領域。近些年來,無位置傳感器無刷直流電動機控制技術成為大家研究的熱點之一。 本課題緊扣研究熱點,以方波無刷直流電動機為控制對象,設計了一套無位置傳感器無刷直流電動機控制系統。該系統采用TMS320LF2407ADSP芯片作為控制核心,運用反電動勢過零點檢測原理和預定位與升頻升壓相結合的啟動方法,實現無位置傳感器無刷直流電動機的控制。為了提高系統的調速性能,控制方法采用了轉速、電流雙閉環控制。 首先,本文研究了無刷直流電動機的基本結構、性能、工作原理及數學模型,利用數學模型在Matlab/Simulink環境中建立無刷直流電動機的仿真模型。接著,給出了系統總體的設計方案,對控制系統設計中的幾個關鍵技術--反電動勢過零點及其相位補償原理、啟動、單神經元PID轉速控制器以及PWM產生電路進行了深入的研究。 然后,根據控制系統總體方案和系統功能要求,進行軟硬件設計。在硬件設計中,主要進行了DSP最小系統、電流和轉子位置檢測電路、IR2130驅動電路等方面電路的設計。在軟件設計中,主要設計出了主程序和A/D中斷程序。其中,主程序包括DSP系統設置、變量初始化、電機正反轉選擇、電機啟動、速度計算及顯示等方面程序;A/D中斷程序包括反電動勢計算、換相時刻計算、電流轉速調節子程序等方面程序。 最后,經實驗結果表明,電機啟動快速、穩定,具有較寬的調速范圍。同時,該系統還具有結構簡單、可靠性高等特點,具有廣泛的應用前景。
上傳時間: 2013-07-08
上傳用戶:LIKE
數字技術、電力電子技術以及控制論的進步推動弧焊電源從模擬階段發展到數字階段。數字化逆變弧焊電源不僅可靠性高、控制精度高而且容易大規模集成、方便升級,成為焊機的發展方向,推動了焊接產業的巨大發展。針對傳統的埋弧焊電源存在的體積大、控制電路復雜、可靠性差等問題,本文提出了雙逆變結構的焊機主電路實現方法和基于“MCU+DSP”的數字化埋弧焊控制系統的設計方案。 本文詳細介紹了埋弧焊的特點和應用,從主電源、控制系統兩個方面闡述了數字化逆變電源的發展歷程,對數字化交流方波埋弧焊的國內外研究現狀進行了深入探討,設計了雙逆變結構的數字化焊接系統,實現了穩定的交流方波輸出。 根據埋弧焊的電弧特點和交流方波的輸出特性,本文采用雙逆變結構設計焊機主電路,一次逆變電路選用改進的相移諧振軟開關,二次逆變電路選用半橋拓撲形式,并研究了兩次逆變過程的原理和控制方式,進行了相關參數計算。根據主電路電路的設計要求,電流型PWM控制芯片UC3846用于一次逆變電路的控制并抑制變壓器偏磁,選擇集成驅動芯片EXB841作為二次逆變電路的驅動。 本課題基于“MCU+DSP”的雙機主控系統來實現焊接電源的控制。其中主控板單片機ATmega64L主要負責送絲機和行走小車的速度反饋及閉環PI運算、電機PWM斬波控制以及過壓、過流、過熱等保護電路的控制。DSP芯片MC56F8323則主要負責焊接電流、焊接電壓的反饋和閉環PI運算以及控制焊接時序,以確保良好的電源外特性輸出。外部控制箱通過按鍵、旋轉編碼器進行焊接參數和焊接狀態的給定,預置和顯示各種焊接參數,快速檢測焊機狀態并加以保護。 主控板芯片之間通過SPI通訊,外部控制箱和主控板之間則通過RS—485協議交換數據。通過軟件設計,實現焊接參數的PI調節,精確控制了焊接過程,并進行了抗干擾設計,解決了影響數字化埋弧焊電源穩定運行的電磁兼容問題。 系統分析了交流方波參數的變化對焊接效果的影響,通過對焊接電流、焊接電壓的波形分析,證明了本課題設計的埋弧焊電源能夠精確控制引弧、焊接、 收弧等焊接時序,并可以有效抑制功率開關器件的過流和變壓器的偏磁問題,取得了良好的焊接效果。 最后,對數字化交流方波埋弧焊的控制系統和焊接試驗進行了總結,分析了系統存在的問題和不足,并指出了新的研究方向。 關鍵詞:埋弧焊;交流方波;數字化;逆變;軟開關技術
上傳時間: 2013-04-24
上傳用戶:kjgkadjg
傳統開環運行的三相混合式步進電動機驅動系統中存在著振蕩和失步等不足之處。本文針對這種情況,通過對理想化三相混合式步進電動機數學模型的分析,把三相混合式步進電動機視為一種低速同步電動機。同時,結合電流跟蹤型PWM控制方式及恒流斬波驅動的工作原理,設計了基于數字信號處理器TMS320F2812的全數字三相混合式步進電動機正弦波細分驅動系統。 首先,本文從三相混合式步進電動機的數學模型出發,對步進電動機的細分驅動方式進行了研究,分析了步進電動機連續均勻旋轉的工作機理。然后分析了步進電動機的運行特性及細分控制的必要性,進而分析了細分驅動對改善步進電動機運行性能的作用,并針對細分運行的一些不足之處,提出了均勻細分恒轉矩控制的方案。理論分析表明,在混合式步進電動機的三相定子繞組中通以互差120°的正弦波電流時,可得到類似同步機的轉矩特性,使電動機均勻旋轉。 本系統硬件電路以TMS320F2812為核心,采用正弦波細分和電流跟蹤型脈寬調制(PWM)技術實現三相混合式步進電動機的細分控制,使三相定子繞組電流嚴格跟蹤電流給定信號變化。應用IR公司的IR2130集成驅動芯片進行了步進電動機驅動系統的功率驅動環節的設計,節省了板上空間,減小了裝置體積。同時從裝置可靠性出發,設計了一套安全可靠的硬件保護電路。 實驗結果表明,本文所設計的三相混合式步進電動機正弦波細分驅動器具有優良的控制性能。細分運行時減弱了混合式步進電動機的低速振動和噪聲,使電動機運行平穩,并改善了其低頻運行性能。
上傳時間: 2013-06-27
上傳用戶:ca05991270