亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

蟲蟲首頁| 資源下載| 資源專輯| 精品軟件
登錄| 注冊

電信<b>本地</b>網

  • Arduino學習筆記A10_Arduino數碼管骰子實驗

    電路連接 由于數碼管品種多樣,還有共陰共陽的,下面我們使用一個數碼管段碼生成器(在文章結尾) 去解決不同數碼管的問題: 本例作者利用手頭現有的一位不知品牌的共陽數碼管:型號D5611 A/B,在Eagle 找了一個 類似的型號SA56-11,引腳功能一樣可以直接代換。所以下面電路圖使用SA56-11 做引腳說明。 注意: 1. 將數碼管的a~g 段,分別接到Arduino 的D0~D6 上面。如果你手上的數碼管未知的話,可以通過通電測量它哪個引腳對應哪個字段,然后找出a~g 即可。 2. 分清共陰還是共陽。共陰的話,接220Ω電阻到電源負極;共陽的話,接220Ω電阻到電源+5v。 3. 220Ω電阻視數碼管實際工作亮度與手頭現有原件而定,不一定需要準確。 4. 按下按鈕即停。   源代碼 由于我是按照段碼生成器默認接法接的,所以不用修改段碼生成器了,直接在段碼生成器選擇共陽極,再按“自動”生成數組就搞定。   下面是源代碼,由于偷懶不用寫循環,使用了部分AVR 語句。 PORTD 這個是AVR 的端口輸出控制語句,8 位對應D7~D0,PORTD=00001001 就是D3 和D0 是高電平。 PORTD = a;就是找出相應的段碼輸出到D7~D0。 DDRD 這個是AVR 語句中控制引腳作為輸出/輸入的語句。DDRD = 0xFF;就是D0~D7 全部 作為輸出腳了。 ARDUINO CODECOPY /* Arduino 單數碼管骰子 Ansifa 2011-12-28 */ //定義段碼表,表中十個元素由LED 段碼生成器生成,選擇了共陽極。 inta[10] = {0xC0, 0xF9, 0xA4, 0xB0, 0x99, 0x92, 0x82, 0xF8, 0x80, 0x90}; voidsetup() { DDRD = 0xFF; //AVR 定義PortD 的低七位全部用作輸出使用。即0xFF=B11111111對 應D7~D0 pinMode(12, INPUT); //D12用來做骰子暫停的開關 } voidloop() { for(int i = 0; i < 10; i++) { //將段碼輸出PortD 的低7位,即Arduino 的引腳D0~D6,這樣需要取出PORTD 最高位,即 D7的狀態,與段碼相加,之后再輸出。 PORTD = a[i]; delay(50); //延時50ms while(digitalRead(12)) {} //如果D12引腳高電平,則在此死循環,暫停LED 跑 動 } }      

    標簽: Arduino 10 數碼管 實驗

    上傳時間: 2013-10-15

    上傳用戶:baitouyu

  • 模擬信號發生頻率計方法

    ? 計算方法: 1) A值(相位)的計算:根據設置的相位值D(單位為度,0度-360度可設置),由公式A=D/360,得出A值,按四舍五入的方法得出相位A的最終值; 2) B偏移量值的計算:按B=512*(1/2VPP-VDC+20)/5; 3) C峰峰值的計算:按C=VPP/20V*4095;

    標簽: 模擬信號 發生 頻率計

    上傳時間: 2013-11-18

    上傳用戶:xdqm

  • 小波變換在圖像邊緣檢測中的應用

    目前,被廣泛使用的經典邊緣檢測算子有Sobel算子,Prewitt算子,Roberts算子,Log算子,Canny算子等等。這些算子的核心思想是圖像的邊緣點是相對應于圖像灰度值梯度的局部極大值點。然而,當圖像中含有噪聲時這些算子對噪聲都比較敏感,使得將噪聲作為邊緣點。由于噪聲的干擾,不能檢測出真正的邊緣。一個擁有良好屬性的的邊緣檢測算法是每個研究者的追求。利用小波交換的特點,設計了三次B樣條平滑濾波算子。通過利用這個算子,對利用小波變換來檢測圖像的邊緣進行了一定的研究和理解。

    標簽: 小波變換 圖像邊緣檢測 中的應用

    上傳時間: 2013-10-13

    上傳用戶:kqc13037348641

  • CoolMOS導通電阻分析及與VDMOS的比較

    為了克服傳統功率MOS 導通電阻與擊穿電壓之間的矛盾,提出了一種新的理想器件結構,稱為超級結器件或Cool2MOS ,CoolMOS 由一系列的P 型和N 型半導體薄層交替排列組成。在截止態時,由于p 型和n 型層中的耗盡區電場產生相互補償效應,使p 型和n 型層的摻雜濃度可以做的很高而不會引起器件擊穿電壓的下降。導通時,這種高濃度的摻雜使器件的導通電阻明顯降低。由于CoolMOS 的這種獨特器件結構,使它的電性能優于傳統功率MOS。本文對CoolMOS 導通電阻與擊穿電壓關系的理論計算表明,對CoolMOS 橫向器件: Ron ·A = C ·V 2B ,對縱向器件: Ron ·A = C ·V B ,與縱向DMOS 導通電阻與擊穿電壓之間Ron ·A = C ·V 2. 5B 的關系相比,CoolMOS 的導通電阻降低了約兩個數量級。

    標簽: CoolMOS VDMOS 導通電阻

    上傳時間: 2013-10-21

    上傳用戶:1427796291

  • 基于周期平穩的盲信噪比估計方法

    基于對信號的周期平穩統計量的分析,提出了一種高斯白噪聲信道下的盲信噪比估計方法。對信號的調制方式沒有要求,也不需要發送端發送己知數據。

    標簽: 周期 信噪比

    上傳時間: 2013-11-07

    上傳用戶:hakim

  • 過采樣法提高A_D分辨率和信噪比

    介紹一種簡便的方法, 只用軟件就可以將轉換器位數提高, 并且還能同時提高采樣系統的信噪比。通過實際驗證, 證明該方法是成功的。

    標簽: A_D 過采樣 分辨率 信噪比

    上傳時間: 2013-11-11

    上傳用戶:zhenyushaw

  • 對非整周期正弦波形信噪比計算方法的研究

    以雙音多頻信號為例,通過運用快速傅里葉變換和Hanning窗等數學方法,分析了信號頻率,電平和相位之間的關系,推導出了計算非整周期正弦波形信噪比的算法,解決了數字信號處理中非整周期正弦波形信噪比計算精度低下的問題。以C編程語言進行實驗,證明了算法的正確性和可重用性,并可極大的提高工作效率。

    標簽: 周期 信噪比 正弦 波形

    上傳時間: 2014-01-18

    上傳用戶:laomv123

  • 定點乘法器設計(中文)

       定點乘法器設計(中文)  運算符:   + 對其兩邊的數據作加法操作; A + B   - 從左邊的數據中減去右邊的數據; A - B   - 對跟在其后的數據作取補操作,即用0減去跟在其后的數據; - B   * 對其兩邊的數據作乘法操作; A * B   & 對其兩邊的數據按位作與操作; A & B   # 對其兩邊的數據按位作或操作; A # B   @ 對其兩邊的數據按位作異或操作; A @ B   ~ 對跟在其后的數據作按位取反操作; ~ B   << 以右邊的數據為移位量將左邊的數據左移; A << B   $ 將其兩邊的數據按從左至右順序拼接; A $ B

    標簽: 定點 乘法器設計

    上傳時間: 2013-12-17

    上傳用戶:trepb001

  • 時鐘分相技術應用

    摘要: 介紹了時鐘分相技術并討論了時鐘分相技術在高速數字電路設計中的作用。 關鍵詞: 時鐘分相技術; 應用 中圖分類號: TN 79  文獻標識碼:A   文章編號: 025820934 (2000) 0620437203 時鐘是高速數字電路設計的關鍵技術之一, 系統時鐘的性能好壞, 直接影響了整個電路的 性能。尤其現代電子系統對性能的越來越高的要求, 迫使我們集中更多的注意力在更高頻率、 更高精度的時鐘設計上面。但隨著系統時鐘頻率的升高。我們的系統設計將面臨一系列的問 題。 1) 時鐘的快速電平切換將給電路帶來的串擾(Crosstalk) 和其他的噪聲。 2) 高速的時鐘對電路板的設計提出了更高的要求: 我們應引入傳輸線(T ransm ission L ine) 模型, 并在信號的匹配上有更多的考慮。 3) 在系統時鐘高于100MHz 的情況下, 應使用高速芯片來達到所需的速度, 如ECL 芯 片, 但這種芯片一般功耗很大, 再加上匹配電阻增加的功耗, 使整個系統所需要的電流增大, 發 熱量增多, 對系統的穩定性和集成度有不利的影響。 4) 高頻時鐘相應的電磁輻射(EM I) 比較嚴重。 所以在高速數字系統設計中對高頻時鐘信號的處理應格外慎重, 盡量減少電路中高頻信 號的成分, 這里介紹一種很好的解決方法, 即利用時鐘分相技術, 以低頻的時鐘實現高頻的處 理。 1 時鐘分相技術 我們知道, 時鐘信號的一個周期按相位來分, 可以分為360°。所謂時鐘分相技術, 就是把 時鐘周期的多個相位都加以利用, 以達到更高的時間分辨。在通常的設計中, 我們只用到時鐘 的上升沿(0 相位) , 如果把時鐘的下降沿(180°相位) 也加以利用, 系統的時間分辨能力就可以 提高一倍(如圖1a 所示)。同理, 將時鐘分為4 個相位(0°、90°、180°和270°) , 系統的時間分辨就 可以提高為原來的4 倍(如圖1b 所示)。 以前也有人嘗試過用專門的延遲線或邏輯門延時來達到時鐘分相的目的。用這種方法產生的相位差不夠準確, 而且引起的時間偏移(Skew ) 和抖動 (J itters) 比較大, 無法實現高精度的時間分辨。 近年來半導體技術的發展, 使高質量的分相功能在一 片芯片內實現成為可能, 如AMCC 公司的S4405, CY2 PRESS 公司的CY9901 和CY9911, 都是性能優異的時鐘 芯片。這些芯片的出現, 大大促進了時鐘分相技術在實際電 路中的應用。我們在這方面作了一些嘗試性的工作: 要獲得 良好的時間性能, 必須確保分相時鐘的Skew 和J itters 都 比較小。因此在我們的設計中, 通常用一個低頻、高精度的 晶體作為時鐘源, 將這個低頻時鐘通過一個鎖相環(PLL ) , 獲得一個較高頻率的、比較純凈的時鐘, 對這個時鐘進行分相, 就可獲得高穩定、低抖動的分 相時鐘。 這部分電路在實際運用中獲得了很好的效果。下面以應用的實例加以說明。2 應用實例 2. 1 應用在接入網中 在通訊系統中, 由于要減少傳輸 上的硬件開銷, 一般以串行模式傳輸 圖3 時鐘分為4 個相位 數據, 與其同步的時鐘信號并不傳輸。 但本地接收到數據時, 為了準確地獲取 數據, 必須得到數據時鐘, 即要獲取與數 據同步的時鐘信號。在接入網中, 數據傳 輸的結構如圖2 所示。 數據以68MBös 的速率傳輸, 即每 個bit 占有14. 7ns 的寬度, 在每個數據 幀的開頭有一個用于同步檢測的頭部信息。我們要找到與它同步性好的時鐘信號, 一般時間 分辨應該達到1ö4 的時鐘周期。即14. 7ö 4≈ 3. 7ns, 這就是說, 系統時鐘頻率應在300MHz 以 上, 在這種頻率下, 我們必須使用ECL inp s 芯片(ECL inp s 是ECL 芯片系列中速度最快的, 其 典型門延遲為340p s) , 如前所述, 這樣對整個系統設計帶來很多的困擾。 我們在這里使用鎖相環和時鐘分相技術, 將一個16MHz 晶振作為時鐘源, 經過鎖相環 89429 升頻得到68MHz 的時鐘, 再經過分相芯片AMCCS4405 分成4 個相位, 如圖3 所示。 我們只要從4 個相位的68MHz 時鐘中選擇出與數據同步性最好的一個。選擇的依據是: 在每個數據幀的頭部(HEAD) 都有一個8bit 的KWD (KeyWord) (如圖1 所示) , 我們分別用 這4 個相位的時鐘去鎖存數據, 如果經某個時鐘鎖存后的數據在這個指定位置最先檢測出這 個KWD, 就認為下一相位的時鐘與數據的同步性最好(相關)。 根據這個判別原理, 我們設計了圖4 所示的時鐘分相選擇電路。 在板上通過鎖相環89429 和分相芯片S4405 獲得我們所要的68MHz 4 相時鐘: 用這4 個 時鐘分別將輸入數據進行移位, 將移位的數據與KWD 作比較, 若至少有7bit 符合, 則認為檢 出了KWD。將4 路相關器的結果經過優先判選控制邏輯, 即可輸出同步性最好的時鐘。這里, 我們運用AMCC 公司生產的 S4405 芯片, 對68MHz 的時鐘進行了4 分 相, 成功地實現了同步時鐘的獲取, 這部分 電路目前已實際地應用在某通訊系統的接 入網中。 2. 2 高速數據采集系統中的應用 高速、高精度的模擬- 數字變換 (ADC) 一直是高速數據采集系統的關鍵部 分。高速的ADC 價格昂貴, 而且系統設計 難度很高。以前就有人考慮使用多個低速 圖5 分相技術應用于采集系統 ADC 和時鐘分相, 用以替代高速的ADC, 但由 于時鐘分相電路產生的相位不準確, 時鐘的 J itters 和Skew 比較大(如前述) , 容易產生較 大的孔徑晃動(Aperture J itters) , 無法達到很 好的時間分辨。 現在使用時鐘分相芯片, 我們可以把分相 技術應用在高速數據采集系統中: 以4 分相后 圖6 分相技術提高系統的數據采集率 的80MHz 采樣時鐘分別作為ADC 的 轉換時鐘, 對模擬信號進行采樣, 如圖5 所示。 在每一采集通道中, 輸入信號經過 緩沖、調理, 送入ADC 進行模數轉換, 采集到的數據寫入存儲器(M EM )。各個 采集通道采集的是同一信號, 不過采樣 點依次相差90°相位。通過存儲器中的數 據重組, 可以使系統時鐘為80MHz 的采 集系統達到320MHz 數據采集率(如圖6 所示)。 3 總結 靈活地運用時鐘分相技術, 可以有效地用低頻時鐘實現相當于高頻時鐘的時間性能, 并 避免了高速數字電路設計中一些問題, 降低了系統設計的難度。

    標簽: 時鐘 分相 技術應用

    上傳時間: 2013-12-17

    上傳用戶:xg262122

  • 電路分析基礎-ppt教程

    第一章  基 礎 知 識由電阻、電容、電感等集中參數元件組成的電路稱為集中電路。1.1  電路與電路模型1.2  電路分析的基本變量1.3  電阻元件和獨立電源元件1.4  基爾霍夫定律1.5  受  控  源1.6  兩類約束和KCL,KVL方程的獨立性1.1  電路與電路模型1.電路2.電路的形式與功能 電路的功能基本上可以分成兩大類。一類是用來實現電能的轉換、傳輸和分配。電路的另一類功能則是在信息網絡中,用來傳遞、儲存、加工和處理各種電信號。  圖1-2所示的是通信網的基本組成框圖。通常把輸入電路的信號稱為激勵,而把經過電路傳輸或處理后的信號稱為響應。 3.電路模型與集中電路 構成電路的設備和器件統稱為電路部件,常用的電路部件有電池、發電機、信號發生器、電阻器、電容器、電感線圈、變壓器、晶體管及集成電路等。 基本的電路參數有3個,即電阻、電容和電感。  基本的集中參數元件有電阻元件、電感元件和電容元件,分別用圖1-3(a),(b)和(c)來表示。

    標簽: 電路分析基礎 教程

    上傳時間: 2013-10-20

    上傳用戶:1966649934

主站蜘蛛池模板: 南江县| 昌黎县| 固安县| 瑞丽市| 化德县| 南安市| 射阳县| 清丰县| 乌什县| 高安市| 沈阳市| 栾川县| 三都| 峡江县| 安国市| 商丘市| 沂水县| 尤溪县| 吴旗县| 东兴市| 威远县| 自贡市| 湟源县| 阆中市| 五台县| 贺兰县| 鲁甸县| 图们市| 广平县| 冷水江市| 沙河市| 印江| 新化县| 盐津县| 原平市| 盐津县| 门源| 澜沧| 荆州市| 潜山县| 宁陕县|