亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

蟲蟲首頁(yè)| 資源下載| 資源專輯| 精品軟件
登錄| 注冊(cè)

CLOCK

  • 8259 VHDL代碼

    a8259 可編程中斷控制 altera提供 The a8259 is designed to simplify the implementation of the interrupt interface  in 8088 and 8086  based microcomputer systems. The device is known as a programmable interrupt controller.  The a8259 receives and prioritizes up to 8 interrupts,  and in the cascade mode, this can be expanded up to  64 interrupts. An asynchronous reset and a CLOCK input have been added to improve operation and reliability.

    標(biāo)簽: 8259 VHDL 代碼

    上傳時(shí)間: 2014-11-29

    上傳用戶:zhyiroy

  • XAPP807-封裝最小的三態(tài)以太網(wǎng)MAC處理引擎

    The Tri-Mode Ethernet MAC (TEMAC) UltraController-II module is a minimal footprint,embedded network processing engine based on the PowerPC™ 405 (PPC405) processor coreand the TEMAC core embedded within a Virtex™-4 FX Platform FPGA. The TEMACUltraController-II module connects to an external PHY through Gigabit Media IndependentInterface (GMII) and Management Data Input/Output (MDIO) interfaces and supports tri-mode(10/100/1000 Mb/s) Ethernet. Software running from the processor cache reads and writesthrough an On-Chip Memory (OCM) interface to two FIFOs that act as buffers between thedifferent CLOCK domains of the PPC405 OCM and the TEMAC.

    標(biāo)簽: XAPP 807 MAC 封裝

    上傳時(shí)間: 2013-10-26

    上傳用戶:yuzsu

  • lpc2292/lpc2294 pdf datasheet

    The LPC2292/2294 microcontrollers are based on a 16/32-bit ARM7TDMI-S CPU with real-time emulation and embedded trace support, together with 256 kB of embedded high-speed flash memory. A 128-bit wide memory interface and a unique accelerator architecture enable 32-bit code execution at the maximum CLOCK rate. For critical code size applications, the alternative 16-bit Thumb mode reduces code by more than 30 pct with minimal performance penalty. With their 144-pin package, low power consumption, various 32-bit timers, 8-channel 10-bit ADC, 2/4 (LPC2294) advanced CAN channels, PWM channels and up to nine external interrupt pins these microcontrollers are particularly suitable for automotive and industrial control applications as well as medical systems and fault-tolerant maintenance buses. The number of available fast GPIOs ranges from 76 (with external memory) through 112 (single-chip). With a wide range of additional serial communications interfaces, they are also suited for communication gateways and protocol converters as well as many other general-purpose applications. Remark: Throughout the data sheet, the term LPC2292/2294 will apply to devices with and without the /00 or /01 suffix. The suffixes /00 and /01 will be used to differentiate from other devices only when necessary.

    標(biāo)簽: lpc datasheet 2292 2294

    上傳時(shí)間: 2014-12-30

    上傳用戶:aysyzxzm

  • LPC314x系列ARM微控制器用戶手冊(cè)

    The NXP LPC314x combine a 270 MHz ARM926EJ-S CPU core, High-speed USB 2.0OTG, 192 KB SRAM, NAND flash controller, flexible external bus interface, three channel10-bit A/D, and a myriad of serial and parallel interfaces in a single chip targeted atconsumer, industrial, medical, and communication markets. To optimize system powerconsumption, the LPC314x have multiple power domains and a very flexible CLOCKGeneration Unit (CGU) that provides dynamic CLOCK gating and scaling.

    標(biāo)簽: 314x LPC 314 ARM

    上傳時(shí)間: 2013-10-11

    上傳用戶:yuchunhai1990

  • LPC315x系列ARM微控制器用戶手冊(cè)

    The NXP LPC315x combine an 180 MHz ARM926EJ-S CPU core, High-speed USB 2.0OTG, 192 KB SRAM, NAND flash controller, flexible external bus interface, an integratedaudio codec, Li-ion charger, Real-Time CLOCK (RTC), and a myriad of serial and parallelinterfaces in a single chip targeted at consumer, industrial, medical, and communicationmarkets. To optimize system power consumption, the LPC315x have multiple powerdomains and a very flexible CLOCK Generation Unit (CGU) that provides dynamic CLOCKgating and scaling.The LPC315x is implemented as multi-chip module with two side-by-side dies, one fordigital fuctions and one for analog functions, which include a Power Supply Unit (PSU),audio codec, RTC, and Li-ion battery charger.

    標(biāo)簽: 315x LPC 315 ARM

    上傳時(shí)間: 2014-01-17

    上傳用戶:Altman

  • 飛思卡爾智能車的舵機(jī)測(cè)試程序

    飛思卡爾智能車的舵機(jī)測(cè)試程序 #include <hidef.h>      /* common defines and macros */#include <MC9S12XS128.h>     /* derivative information */#pragma LINK_INFO DERIVATIVE "mc9s12xs128" void SetBusCLK_16M(void)             {       CLKSEL=0X00;        PLLCTL_PLLON=1;          //鎖相環(huán)電路允許位    SYNR=0x00 | 0x01;        //SYNR=1    REFDV=0x80 | 0x01;          POSTDIV=0x00;            _asm(nop);              _asm(nop);    while(!(CRGFLG_LOCK==1));       CLKSEL_PLLSEL =1;          } void PWM_01(void) {     //舵機(jī)初始化   PWMCTL_CON01=1;    //0和1聯(lián)合成16位PWM;    PWMCAE_CAE1=0;    //選擇輸出模式為左對(duì)齊輸出模式    PWMCNT01 = 0;     //計(jì)數(shù)器清零;    PWMPOL_PPOL1=1;    //先輸出高電平,計(jì)數(shù)到DTY時(shí),反轉(zhuǎn)電平    PWMPRCLK = 0X40;    //CLOCKA 不分頻,CLOCKA=busCLOCK=16MHz;CLK B 16分頻:1Mhz     PWMSCLA = 0x08;    //對(duì)CLOCK SA 16分頻,pwm CLOCK=CLOCKA/16=1MHz;         PWMCLK_PCLK1 = 1;   //選擇CLOCK SA做時(shí)鐘源    PWMPER01 = 20000;   //周期20ms; 50Hz;    PWMDTY01 = 1500;   //高電平時(shí)間為1.5ms;     PWME_PWME1 = 1;   

    標(biāo)簽: 飛思卡爾智能車 舵機(jī) 測(cè)試程序

    上傳時(shí)間: 2013-11-04

    上傳用戶:狗日的日子

  • 基于(英蓓特)STM32V100的串口程序

    This example provides a description of how  to use the USART with hardware flowcontrol and communicate with the Hyperterminal.First, the USART2 sends the TxBuffer to the hyperterminal and still waiting fora string from the hyperterminal that you must enter which must end by '\r'character (keypad ENTER button). Each byte received is retransmitted to theHyperterminal. The string that you have entered is stored in the RxBuffer array. The receivebuffer have a RxBufferSize bytes as maximum. The USART2 is configured as follow:    - BaudRate = 115200 baud      - Word Length = 8 Bits    - One Stop Bit    - No parity    - Hardware flow control enabled (RTS and CTS signals)    - Receive and transmit enabled    - USART CLOCK disabled    - USART CPOL: CLOCK is active low    - USART CPHA: Data is captured on the second edge     - USART LastBit: The CLOCK pulse of the last data bit is not output to                      the SCLK pin

    標(biāo)簽: V100 STM 100 32V

    上傳時(shí)間: 2013-10-31

    上傳用戶:yy_cn

  • Xilinx UltraScale:新一代架構(gòu)滿足您的新一代架構(gòu)需求(EN)

      中文版詳情瀏覽:http://www.elecfans.com/emb/fpga/20130715324029.html   Xilinx UltraScale:The Next-Generation Architecture for Your Next-Generation Architecture    The Xilinx® UltraScale™ architecture delivers unprecedented levels of integration and capability with ASIC-class system- level performance for the most demanding applications.   The UltraScale architecture is the industr y's f irst application of leading-edge ASIC architectural enhancements in an All Programmable architecture that scales from 20 nm planar through 16 nm FinFET technologies and beyond, in addition to scaling from monolithic through 3D ICs. Through analytical co-optimization with the X ilinx V ivado® Design Suite, the UltraScale architecture provides massive routing capacity while intelligently resolving typical bottlenecks in ways never before possible. This design synergy achieves greater than 90% utilization with no performance degradation.   Some of the UltraScale architecture breakthroughs include:   • Strategic placement (virtually anywhere on the die) of ASIC-like system CLOCKs, reducing CLOCK skew by up to 50%    • Latency-producing pipelining is virtually unnecessary in systems with massively parallel bus architecture, increasing system speed and capability   • Potential timing-closure problems and interconnect bottlenecks are eliminated, even in systems requiring 90% or more resource utilization   • 3D IC integration makes it possible to build larger devices one process generation ahead of the current industr y standard    • Greatly increased system performance, including multi-gigabit serial transceivers, I/O, and memor y bandwidth is available within even smaller system power budgets   • Greatly enhanced DSP and packet handling   The Xilinx UltraScale architecture opens up whole new dimensions for designers of ultra-high-capacity solutions.

    標(biāo)簽: UltraScale Xilinx 架構(gòu)

    上傳時(shí)間: 2013-11-21

    上傳用戶:wxqman

  • XAPP806 -決定DDR反饋時(shí)鐘的最佳DCM相移

    This application note describes how to build a system that can be used for determining theoptimal phase shift for a Double Data Rate (DDR) memory feedback CLOCK. In this system, theDDR memory is controlled by a controller that attaches to either the OPB or PLB and is used inan embedded microprocessor application. This reference system also uses a DCM that isconfigured so that the phase of its output CLOCK can be changed while the system is running anda GPIO core that controls that phase shift. The GPIO output is controlled by a softwareapplication that can be run on a PowerPC® 405 or Microblaze™ microprocessor.

    標(biāo)簽: XAPP 806 DDR DCM

    上傳時(shí)間: 2014-11-26

    上傳用戶:erkuizhang

  • XAPP708 -133MHz PCI-X到128MB DDR小型DIMM存儲(chǔ)器橋

      The Virtex-4 features, such as the programmable IDELAY and built-in FIFO support, simplifythe bridging of a high-speed, PCI-X core to large amounts of DDR-SDRAM memory. Onechallenge is meeting the PCI-X target initial latency specification. PCI-X Protocol Addendum tothe PCI Local Bus Specification Revision 2.0a ([Ref 6]) dictates that when a target signals adata transfer, "the target must do so within 16 CLOCKs of the assertion of FRAME#." PCItermination transactions, such as Split Response/Complete, are commonly used to meet thelatency specifications. This method adds complexity to the design, as well as additional systemlatency. Another solution is to increase the ratio of the memory frequency to the PCI-X busfrequency. However, this solution increases the required power and CLOCK resource usage.

    標(biāo)簽: PCI-X XAPP DIMM 708

    上傳時(shí)間: 2013-11-24

    上傳用戶:18707733937

主站蜘蛛池模板: 汨罗市| 全州县| 大兴区| 清涧县| 泽普县| 东光县| 仁怀市| 西青区| 乌兰察布市| 中山市| 松潘县| 普安县| 新化县| 广安市| 宁国市| 南和县| 凉城县| 石渠县| 仙居县| 通海县| 唐山市| 隆安县| 新巴尔虎右旗| 蓬莱市| 安多县| 自贡市| 灵台县| 苗栗县| 龙江县| 富阳市| 辉南县| 城市| 民丰县| 玛曲县| 聊城市| 顺昌县| 屯昌县| 介休市| 仙居县| 阿拉善盟| 怀集县|