Introduction to Xilinx Packaging Electronic packages are interconnectable housings for semiconductor devices. The major functions of the electronic packages are to provide electrical interconnections between the IC and the board and to efficiently remove heat generated by the device. Feature sizes are constantly shrinking, resulting in increased number of transistors being packed into the device. Today's submicron technology is also enabling large-scale functional integration and system-on-a-chip solutions. In order to keep pace with these new advancements in silicon technologies, semiconductor packages have also evolved to provide improved device functionality and performance. Feature size at the device level is driving package feature sizes down to the design rules of the early transistors. To meet these demands, electronic packages must be flexible to address high pin counts, reduced pitch and form factor requirements. At the same time,packages must be reliable and cost effective.
Prakash Rashinkar has over 15 years experience in system design and verificationof embedded systems for communication satellites, launch vehicles and spacecraftground systems, high-performance computing, switching, multimedia, and wirelessapplications. Prakash graduated with an MSEE from Regional Engineering College,Warangal, in India. He lead the team that was responsible for delivering themethodologies for SOC verification at Cadence Design Systems. Prakash is anactive member of the VSIA Functional Verification DWG. He is currently Architectin the Vertical Markets and Design Environments Group at Cadence.
The field of microelectromechanical systems (MEMS), particularly micromachinedmechanical transducers, has been expanding over recent years, and the productioncosts of these devices continue to fall. Using materials, fabrication processes, anddesign tools originally developed for the microelectronic circuits industry, newtypes of microengineered device are evolving all the time—many offering numerousadvantages over their traditional counterparts. The electrical properties of siliconhave been well understood for many years, but it is the mechanical properties thathave been exploited in many examples of MEMS. This book may seem slightlyunusual in that it has four editors. However, since we all work together in this fieldwithin the School of Electronics and Computer Science at the University of Southampton,it seemed natural to work together on a project like this. MEMS are nowappearing as part of the syllabus for both undergraduate and postgraduate coursesat many universities, and we hope that this book will complement the teaching thatis taking place in this area.
The NCV7356 is a physical layer device for a single wire data linkcapable of operating with various Carrier Sense Multiple Accesswith Collision Resolution (CSMA/CR) protocols such as the BoschController Area Network (CAN) version 2.0. This serial data linknetwork is intended for use in applications where high data rate is notrequired and a lower data rate can achieve cost reductions in both thephysical media components and in the microprocessor and/ordedicated logic devices which use the network.The network shall be able to operate in either the normal data ratemode or a high-speed data download mode for assembly line andservice data transfer operations. The high-speed mode is onlyintended to be operational when the bus is attached to an off-boardservice node. This node shall provide temporary bus electrical loadswhich facilitate higher speed operation. Such temporary loads shouldbe removed when not performing download operations.The bit rate for normal communications is typically 33 kbit/s, forhigh-speed transmissions like described above a typical bit rate of83 kbit/s is recommended. The NCV7356 features undervoltagelockout, timeout for faulty blocked input signals, output blankingtime in case of bus ringing and a very low sleep mode current.
The main objective of this book is to present all the relevant informationrequired for RF and micro-wave power amplifier design includingwell-known and novel theoretical approaches and practical design techniquesas well as to suggest optimum design approaches effectively combininganalytical calculations and computer-aided design. This bookcan also be very useful for lecturing to promote the analytical way ofthinking with practical verification by making a bridge between theoryand practice of RF and microwave engineering. As it often happens, anew result is the well-forgotten old one. Therefore, the demonstrationof not only new results based on new technologies or circuit schematicsis given, but some sufficiently old ideas or approaches are also introduced,that could be very useful in modern practice or could contributeto appearance of new ideas or schematic techniques.
This errata sheet describes both the known functional problems and anydeviations from the electrical specifications known at the release date ofthis document.Each deviation is assigned a number and its history is tracked in a table atthe end of the document.
This errata sheet describes both the known functional problems and anydeviations from the electrical specifications known at the release date ofthis document.Each deviation is assigned a number and its history is tracked in a table atthe end of the document.
This white paper discusses how market trends, the need for increased productivity, and new legislation have
accelerated the use of safety systems in industrial machinery. This TÜV-qualified FPGA design methodology is
changing the paradigms of safety designs and will greatly reduce development effort, system complexity, and time to
market. This allows FPGA users to design their own customized safety controllers and provides a significant
competitive advantage over traditional microcontroller or ASIC-based designs.
Introduction
The basic motivation of deploying functional safety systems is to ensure safe operation as well as safe behavior in
cases of failure. Examples of functional safety systems include train brakes, proximity sensors for hazardous areas
around machines such as fast-moving robots, and distributed control systems in process automation equipment such
as those used in petrochemical plants.
The International Electrotechnical Commission’s standard, IEC 61508: “Functional safety of
electrical/electronic/programmable electronic safety-related systems,” is understood as the standard for designing
safety systems for electrical, electronic, and programmable electronic (E/E/PE) equipment. This standard was
developed in the mid-1980s and has been revised several times to cover the technical advances in various industries.
In addition, derivative standards have been developed for specific markets and applications that prescribe the
particular requirements on functional safety systems in these industry applications. Example applications include
process automation (IEC 61511), machine automation (IEC 62061), transportation (railway EN 50128), medical (IEC
62304), automotive (ISO 26262), power generation, distribution, and transportation.
圖Figure 1. Local Safety System