亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

蟲蟲首頁| 資源下載| 資源專輯| 精品軟件
登錄| 注冊(cè)

PI

圓周率(PI)是圓的周長(zhǎng)與直徑的比值,一般用希臘字母π表示,是一個(gè)在數(shù)學(xué)及物理學(xué)中普遍存在的數(shù)學(xué)常數(shù)。π也等于圓形之面積與半徑平方之比,是精確計(jì)算圓周長(zhǎng)、圓面積、球體積等幾何形狀的關(guān)鍵值。在分析學(xué)里,π可以嚴(yán)格地定義為滿足sinx=0的最小正數(shù)x。
  • (1) 實(shí)現(xiàn)一個(gè)Point類

    (1) 實(shí)現(xiàn)一個(gè)Point類,該類包含表示坐標(biāo)的兩個(gè)int型變量x、y,構(gòu)造方法Point()和Point(int xx, int yy),返回x值和y值的int getX()和int getY()方法,計(jì)算兩點(diǎn)間距離的double distance(Point)方法。其中計(jì)算平方根用Math.sqrt()方法。 (2) 實(shí)現(xiàn)一個(gè)Circle類,該類包含表示圓心的Point型變量center,表示半徑的int radius變量,以及構(gòu)造方法Circle()、Circle(int xx,int yy,int r)、Circle(Point c,int r),返回周長(zhǎng)和面積的int perimeter()、double area()方法,返回兩個(gè)圓是否為同一個(gè)圓(返回0)、同心圓(返回1)、相交的圓(返回2)、分離的圓(返回3)、包含的圓(返回4)等關(guān)系的int relation(Circle c)等方法。PI值可以用Math.PI常量。 (3) 實(shí)現(xiàn)測(cè)試上述兩個(gè)類的ClassTest類。該類在main方法中分別創(chuàng)建若干個(gè)Point對(duì)象和Circle對(duì)象,并調(diào)用相關(guān)方法,輸出方法的返回值,驗(yàn)證其正確性。 (4) 將Point類、Circle類和主類的包名分別調(diào)整為p1、p2、p3,并重新運(yùn)行,驗(yàn)證是否運(yùn)行正確。

    標(biāo)簽: Point

    上傳時(shí)間: 2014-11-25

    上傳用戶:cylnpy

  • 一被控對(duì)象

    一被控對(duì)象 ,給定為階躍給定,幅值為500,設(shè)計(jì)一個(gè)兩維模糊PI型控制器,輸入語言變量和輸出語言變量均取7個(gè)值{NB,NM,NS,ZE,PS,PM,PB},模糊論域?yàn)閧-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6},用matlab編程仿真研究。

    標(biāo)簽: 對(duì)象

    上傳時(shí)間: 2013-12-16

    上傳用戶:大融融rr

  • private double PointToAngle(Point AOrigin, Point APoint) { if (APoint.X == AOrigin.X) if (APoin

    private double PointToAngle(Point AOrigin, Point APoint) { if (APoint.X == AOrigin.X) if (APoint.Y > AOrigin.Y) return Math.PI * 0.5f else return Math.PI * 1.5f else if (APoint.Y == AOrigin.Y) if (APoint.X > AOrigin.X) return 0 else return Math.PI else {

    標(biāo)簽: AOrigin APoint Point PointToAngle

    上傳時(shí)間: 2016-10-31

    上傳用戶:zhyiroy

  • private double PointToAngle(Point AOrigin, Point APoint) { if (APoint.X == AOrigin.X) if (APoin

    private double PointToAngle(Point AOrigin, Point APoint) { if (APoint.X == AOrigin.X) if (APoint.Y > AOrigin.Y) return Math.PI * 0.5f else return Math.PI * 1.5f else if (APoint.Y == AOrigin.Y) if (APoint.X > AOrigin.X) return 0 else return Math.PI else {

    標(biāo)簽: AOrigin APoint Point PointToAngle

    上傳時(shí)間: 2016-10-31

    上傳用戶:sunjet

  • private double PointToAngle(Point AOrigin, Point APoint) { if (APoint.X == AOrigin.X) if (APoin

    private double PointToAngle(Point AOrigin, Point APoint) { if (APoint.X == AOrigin.X) if (APoint.Y > AOrigin.Y) return Math.PI * 0.5f else return Math.PI * 1.5f else if (APoint.Y == AOrigin.Y) if (APoint.X > AOrigin.X) return 0 else return Math.PI else {

    標(biāo)簽: AOrigin APoint Point PointToAngle

    上傳時(shí)間: 2013-12-18

    上傳用戶:rocketrevenge

  • For solving the following problem: "There is No Free Lunch" Time Limit: 1 Second Memory Limit: 3

    For solving the following problem: "There is No Free Lunch" Time Limit: 1 Second Memory Limit: 32768 KB One day, CYJJ found an interesting PIece of commercial from newspaper: the Cyber-restaurant was offering a kind of "Lunch Special" which was said that one could "buy one get two for free". That is, if you buy one of the dishes on their menu, denoted by di with price PI , you may get the two neighboring dishes di-1 and di+1 for free! If you PIck up d1, then you may get d2 and the last one dn for free, and if you choose the last one dn, you may get dn-1 and d1 for free. However, after investigation CYJJ realized that there was no free lunch at all. The price PI of the i-th dish was actually calculated by adding up twice the cost ci of the dish and half of the costs of the two "free" dishes. Now given all the prices on the menu, you are asked to help CYJJ find the cost of each of the dishes.

    標(biāo)簽: Limit following solving problem

    上傳時(shí)間: 2014-01-12

    上傳用戶:362279997

  • it is a simulation about ML synchronization algorithm in OFDM systems,you can slao see a function PI

    it is a simulation about ML synchronization algorithm in OFDM systems,you can slao see a function PIcture in its output,that s useful for a beginner

    標(biāo)簽: synchronization simulation algorithm function

    上傳時(shí)間: 2013-12-17

    上傳用戶:yulg

  • Euler函數(shù): m = p1^r1 * p2^r2 * …… * pn^rn ai >= 1 , 1 <= i <= n Euler函數(shù): 定義:phi(m) 表示小于等

    Euler函數(shù): m = p1^r1 * p2^r2 * …… * pn^rn ai >= 1 , 1 <= i <= n Euler函數(shù): 定義:phi(m) 表示小于等于m并且與m互質(zhì)的正整數(shù)的個(gè)數(shù)。 phi(m) = p1^(r1-1)*(p1-1) * p2^(r2-1)*(p2-1) * …… * pn^(rn-1)*(pn-1) = m*(1 - 1/p1)*(1 - 1/p2)*……*(1 - 1/pn) = p1^(r1-1)*p2^(r2-1)* …… * pn^(rn-1)*phi(p1*p2*……*pn) 定理:若(a , m) = 1 則有 a^phi(m) = 1 (mod m) 即a^phi(m) - 1 整出m 在實(shí)際代碼中可以用類似素?cái)?shù)篩法求出 for (i = 1 i < MAXN i++) phi[i] = i for (i = 2 i < MAXN i++) if (phi[i] == i) { for (j = i j < MAXN j += i) { phi[j] /= i phi[j] *= i - 1 } } 容斥原理:定義phi(p) 為比p小的與p互素的數(shù)的個(gè)數(shù) 設(shè)n的素因子有p1, p2, p3, … pk 包含p1, p2…的個(gè)數(shù)為n/p1, n/p2… 包含p1*p2, p2*p3…的個(gè)數(shù)為n/(p1*p2)… phi(n) = n - sigm_[i = 1](n/PI) + sigm_[i!=j](n/(PI*pj)) - …… +- n/(p1*p2……pk) = n*(1 - 1/p1)*(1 - 1/p2)*……*(1 - 1/pk)

    標(biāo)簽: Euler lt phi 函數(shù)

    上傳時(shí)間: 2014-01-10

    上傳用戶:wkchong

  • 計(jì)算全息close all clc clear A=zeros(64) A(15:20,20:40)=1 A(15:50,20:25)=1 A(45:50,20:40)=1 A(30:34,

    計(jì)算全息close all clc clear A=zeros(64) A(15:20,20:40)=1 A(15:50,20:25)=1 A(45:50,20:40)=1 A(30:34,20:35)=1 % ppp=exp(rand(64)*PI*2*i) A=A.*ppp % Author s email: zjliu2001@163.com figure imshow(abs(A),[]) Fa=fft2(fftshift(A)) Fs=fftshift(Fa) Am=abs(Fs) % amplitude Ph=angle(Fs) % phase s=11 % 這表示邊長(zhǎng)嗎? cgh=zeros(64*s) th=max(max(abs(Fs)))

    標(biāo)簽: 20 close clear zeros

    上傳時(shí)間: 2014-10-13

    上傳用戶:wweqas

  • // 入口參數(shù): // l: l = 0, 傅立葉變換 l = 1, 逆傅立葉變換 // il: il = 0,不計(jì)算傅立葉變換或逆變換模和幅角;il = 1,計(jì)算模和幅角 // n: 輸入的

    // 入口參數(shù): // l: l = 0, 傅立葉變換 l = 1, 逆傅立葉變換 // il: il = 0,不計(jì)算傅立葉變換或逆變換模和幅角;il = 1,計(jì)算模和幅角 // n: 輸入的點(diǎn)數(shù),為偶數(shù),一般為32,64,128,...,1024等 // k: 滿足n=2^k(k>0),實(shí)質(zhì)上k是n個(gè)采樣數(shù)據(jù)可以分解為偶次冪和奇次冪的次數(shù) // pr[]: l=0時(shí),存放N點(diǎn)采樣數(shù)據(jù)的實(shí)部 // l=1時(shí), 存放傅立葉變換的N個(gè)實(shí)部 // PI[]: l=0時(shí),存放N點(diǎn)采樣數(shù)據(jù)的虛部 // l=1時(shí), 存放傅立葉變換的N個(gè)虛部 // // 出口參數(shù): // fr[]: l=0, 返回傅立葉變換的實(shí)部 // l=1, 返回逆傅立葉變換的實(shí)部 // fi[]: l=0, 返回傅立葉變換的虛部 // l=1, 返回逆傅立葉變換的虛部 // pr[]: il = 1,i = 0 時(shí),返回傅立葉變換的模 // il = 1,i = 1 時(shí),返回逆傅立葉變換的模 // PI[]: il = 1,i = 0 時(shí),返回傅立葉變換的輻角 // il = 1,i = 1 時(shí),返回逆傅立葉變換的輻角

    標(biāo)簽: il 傅立葉變換 計(jì)算

    上傳時(shí)間: 2017-01-03

    上傳用戶:ynsnjs

主站蜘蛛池模板: 陈巴尔虎旗| 班玛县| 盐源县| 托克托县| 博野县| 理塘县| 合川市| 额济纳旗| 黔江区| 句容市| 浮梁县| 弥勒县| 河池市| 黑龙江省| 莫力| 雅江县| 肇庆市| 开阳县| 上栗县| 巨鹿县| 峨眉山市| 永州市| 安远县| 东乡族自治县| 隆林| 蛟河市| 伊宁县| 潞城市| 四会市| 米易县| 清丰县| 喀喇沁旗| 深水埗区| 德兴市| 丘北县| 南京市| 潜江市| 台江县| 淮南市| 互助| 儋州市|