This paper provides incumbent wireless Internet service providers (WISPs), new WISPs and
demanding new markets (such as government and education) with a technical analysis of
alternatives for implementing last-mile wireless broadband services.
The potential of solving real-time demanding industrial applications, using vision-based
algorithms, drastically grew due to an increasing availability of computational power.
In this thesis a novel real-time, vision-based Blackjack analysis system is presented. The
embedding of the vision algorithms in a compound system of other information sources such
as an electronic chip tray, reduces the vision task to detect cards and chips. Robust results
are achieved by not just analyzing single frames but an image stream regarding game-ß ow
informations. The requirements for such a system are a highly robust and adaptive behav-
ior. This is motivated by the vital interest of casino entrepreneurs in a 100 statistical
analysis of their offered gambling in order to support the business plan, measuring table
and dealer performance and give accurate player rating. Extensive experiments show the
robustness and applicability of the proposed system.
The STi7141 is a highly integrated SoC (systemon-
chip) designed to meet the demanding needs of
the interactive cable set top box market place. The
STi7141 integrates all the major system functions
into a single device, and provides world leading,
multi-layer, advanced security technologies to
protect valuable video and audio assets.
Speed and accuracy don’t always go hand-in-handin DC/DC converter systems—that is, until now. TheLTC3811 is a dual output, fi xed frequency current modeDC/DC switching regulator controller designed for one oftoday’s most demanding power supply applications: highcurrent, low voltage processor core supplies.
中文版詳情瀏覽:http://www.elecfans.com/emb/fpga/20130715324029.html
Xilinx UltraScale:The Next-Generation Architecture for Your Next-Generation Architecture
The Xilinx® UltraScale™ architecture delivers unprecedented levels of integration and capability with ASIC-class system- level performance for the most demanding applications.
The UltraScale architecture is the industr y's f irst application of leading-edge ASIC architectural enhancements in an All Programmable architecture that scales from 20 nm planar through 16 nm FinFET technologies and beyond, in addition to scaling from monolithic through 3D ICs. Through analytical co-optimization with the X ilinx V ivado® Design Suite, the UltraScale architecture provides massive routing capacity while intelligently resolving typical bottlenecks in ways never before possible. This design synergy achieves greater than 90% utilization with no performance degradation.
Some of the UltraScale architecture breakthroughs include:
• Strategic placement (virtually anywhere on the die) of ASIC-like system clocks, reducing clock skew by up to 50%
• Latency-producing pipelining is virtually unnecessary in systems with massively parallel bus architecture, increasing system speed and capability
• Potential timing-closure problems and interconnect bottlenecks are eliminated, even in systems requiring 90% or more resource utilization
• 3D IC integration makes it possible to build larger devices one process generation ahead of the current industr y standard
• Greatly increased system performance, including multi-gigabit serial transceivers, I/O, and memor y bandwidth is available within even smaller system power budgets
• Greatly enhanced DSP and packet handling
The Xilinx UltraScale architecture opens up whole new dimensions for designers of ultra-high-capacity solutions.
中文版詳情瀏覽:http://www.elecfans.com/emb/fpga/20130715324029.html
Xilinx UltraScale:The Next-Generation Architecture for Your Next-Generation Architecture
The Xilinx® UltraScale™ architecture delivers unprecedented levels of integration and capability with ASIC-class system- level performance for the most demanding applications.
The UltraScale architecture is the industr y's f irst application of leading-edge ASIC architectural enhancements in an All Programmable architecture that scales from 20 nm planar through 16 nm FinFET technologies and beyond, in addition to scaling from monolithic through 3D ICs. Through analytical co-optimization with the X ilinx V ivado® Design Suite, the UltraScale architecture provides massive routing capacity while intelligently resolving typical bottlenecks in ways never before possible. This design synergy achieves greater than 90% utilization with no performance degradation.
Some of the UltraScale architecture breakthroughs include:
• Strategic placement (virtually anywhere on the die) of ASIC-like system clocks, reducing clock skew by up to 50%
• Latency-producing pipelining is virtually unnecessary in systems with massively parallel bus architecture, increasing system speed and capability
• Potential timing-closure problems and interconnect bottlenecks are eliminated, even in systems requiring 90% or more resource utilization
• 3D IC integration makes it possible to build larger devices one process generation ahead of the current industr y standard
• Greatly increased system performance, including multi-gigabit serial transceivers, I/O, and memor y bandwidth is available within even smaller system power budgets
• Greatly enhanced DSP and packet handling
The Xilinx UltraScale architecture opens up whole new dimensions for designers of ultra-high-capacity solutions.
The PCI Local bus concept was developed to break
the PC data I/O bottleneck and clearly opens the door
to increasing system speed and expansion capabilities.
The PCI Local bus moves high speed peripherals
from the I/O bus and places them closer to the system’s
processor bus, providing faster data transfers
between the processor and peripherals. The PCI Local
bus also addresses the industry’s need for a bus standard
which is not directly dependent on the speed,
size and type of system processor. It represents the
first microprocessor independent bus offering performance
more than adequate for the most demanding
applications such as full-motion video.
The PCI Local bus concept was developed to break
the PC data I/O bottleneck and clearly opens the door
to increasing system speed and expansion capabilities.
The PCI Local bus moves high speed peripherals
from the I/O bus and places them closer to the system’s
processor bus, providing faster data transfers
between the processor and peripherals. The PCI Local
bus also addresses the industry’s need for a bus standard
which is not directly dependent on the speed,
size and type of system processor. It represents the
first microprocessor independent bus offering performance
more than adequate for the most demanding
applications such as full-motion video.
Hardware reference
The PCI Local bus concept was developed to break
the PC data I/O bottleneck and clearly opens the door
to increasing system speed and expansion capabilities.
The PCI Local bus moves high speed peripherals
from the I/O bus and places them closer to the system’s
processor bus, providing faster data transfers
between the processor and peripherals. The PCI Local
bus also addresses the industry’s need for a bus standard
which is not directly dependent on the speed,
size and type of system processor. It represents the
first microprocessor independent bus offering performance
more than adequate for the most demanding
applications such as full-motion video.
User Manual
Kiss FFT is a small and simple FFT library. It has no complicated platform-specific optimizations, can do either fixed or floating point with just a recompile, and is efficient enough for all but the most demanding applications.