ZCORE系列NBIOT開發底板資料開源。 NBIOT開發板主要接口: Micro USB *1 3.7V電池充電電路 慶科WIFI模塊支持 貼片SIM卡支持 STM32L433全部外圍接口已拉出為2.0排針
上傳時間: 2018-04-25
上傳用戶:pshr960405
1602,LCD,液晶,使用手冊 1602 = 16個字符/行 * 2行 = 像素 16*2
上傳時間: 2018-05-10
上傳用戶:phg210
The rapid growth in mobile communications has led to an increasing demand for wide- band high data rate communications services. In recent years, Distributed Antenna Systems (DAS) has emerged as a promising candidate for future (beyond 3G or 4G) mobile communications, as illustrated by projects such as FRAMES and FuTURE. The architecture of DAS inherits and develops the concepts of pico- or micro-cell systems, where multiple distributed antennas or access points (AP) are connected to and con- trolled by a central unit.
標簽: Distributed Antenna Systems
上傳時間: 2020-05-27
上傳用戶:shancjb
The need to develop reliable microelectronic devices capable of operating at high speeds with complex functionality requires a better understanding of the factors that govern the thermal performance of electronics. With an increased demand on system reliability and performance combined with miniaturization of the devices, thermal consideration has become a crucial factor in the design of elec- tronic packages, from chip to system levels.
標簽: Telecommunications Management Equipment Thermal of
上傳時間: 2020-06-01
上傳用戶:shancjb
Applications of microelectromechanical systems (MEMS) and microfabrica- tion have spread to different fields of engineering and science in recent years. Perhaps the most exciting development in the application of MEMS technol- ogy has occurred in the biological and biomedical areas. In addition to key fluidic components, such as microvalves, pumps, and all kinds of novel sensors that can be used for biological and biomedical analysis and mea- surements, many other types of so-called micro total analysis systems (TAS) have been developed.
標簽: Applications Technologies Bio-MEMS and
上傳時間: 2020-06-06
上傳用戶:shancjb
The mature CMOS fabrication processes are available in many IC foundries. It is cost-effective to leverage the existing CMOS fabrication technologies to implement MEMS devices. On the other hand, the MEMS devices could also add values to the IC industry as the Moore’s law reaching its limit. The CMOS MEMS could play a key role to bridge the gap between the CMOS and MEMS technologies. The CMOS MEMS also offers the advantage of monolithic integration of ICs and micro mechanical components.
標簽: TECHNOLOGY CMOS MEMS KEY
上傳時間: 2020-06-06
上傳用戶:shancjb
For more than three decades, Micro Electro Mechanical Systems (MEMS) have steadily transitioned out of research labs and into production forming a more than $10 billion market [1]. MEMS devices such as accelerometers, pressure sensors and microphones, to name a few, have seen immense utilization, particularly in the consumer electronics market, because of their compact sizes and minute power consumptions. In addition, these devices benefit from batch fabrication, which has enabled year-over-year reductions in cost [2]. In recent years,
上傳時間: 2020-06-06
上傳用戶:shancjb
micro-electro-Mechanical Systems (MEMS) are miniature systems composed ofintegratedelectricalandmechanicalpartstosenseand/orcontrolthingsonaμmscale. The concept of MEMS is attributed to Richard Feynman’s famous talk on December 29th, 1959 [2,3]. Dr. Feynman foresaw many aspects of future MEMS development with his insight in microphysics. In particular, material properties in the μm scale are differentfrombulkpropertiesandthescalingdownofintegratedcircuits(IC)fabrication technology has been a major driving force of MEMS development.
標簽: Performance High MEMS RF
上傳時間: 2020-06-06
上傳用戶:shancjb
Recent advancements in nanotechnology (NT) materials and growth of micro/ nanotechnology have opened the door for potential applications of microelectro- mechanical systems (MEMS)- and NT-based sensors and devices. Such sensors and devices are best suited for communications, medical diagnosis, commercial, military, aerospace, and satellite applications. This book comes at a time when the future and well-being of Western industrial nations in the twenty-first century’s global eco- nomy increasingly depend on the quality and depth of the technological innovations they can commercialize at a rapid pace.
標簽: MEMS
上傳時間: 2020-06-06
上傳用戶:shancjb
The solid high-polymer-film-type fuel cell (PEM-FC) system is used as the power supply equipment for transportation and replaces an internal combustion engine. A reduction of the environmental load is expected through the cogeneration system’s (CGS) use of the PEM-FC system as a distributed power supply to individual houses, apartments, and so forth [1–3]. The growing use of distributed power systems, such as fuel cells, the reduction of power-transmission losses, and an increase of waste heat recovery are expected. Therefore, the reduction of carbon- dioxide emission is also expected as compared to conventional energy supply methods using commercial electric power.
標簽: Micro-grids Fuel Cell
上傳時間: 2020-06-07
上傳用戶:shancjb