設計一種應用于某全地形ATV車載武器裝置中的中控系統,該系統設計是以TMS320F2812型DSP為核心,采用模塊化設計思想,對其硬件部分進行系統設計,能夠完成對武器裝置高低、回轉方向的運動控制,實現靜止或行進狀態中對目標物的測距,自動瞄準以及按既定發射模式發射彈丸和各項安全性能檢測等功能。通過編制相應的軟件,對其進行系統調試,驗證了該設計運行穩定。
Abstract:
A central control system applied to an ATV vehicle weapons is designed. The system design is based on TMS320F2812 DSP as the core, uses modular design for its hardware parts. The central control system can complete the motion control of the level of weapons and equipment, rotation direction, to achieve a state of static or moving objects on the target ranging, auto-targeting and according to the established target and the projectile and the launch of the security performance testing and other functions. Through the development of appropriate software and to carry out system testing to verify the stability of this design and operation.
中文版詳情瀏覽:http://www.elecfans.com/emb/fpga/20130715324029.html
Xilinx UltraScale:The Next-Generation Architecture for Your Next-Generation Architecture
The Xilinx® UltraScale™ architecture delivers unprecedented levels of integration and capability with ASIC-class system- level performance for the most demanding applications.
The UltraScale architecture is the industr y's f irst application of leading-edge ASIC architectural enhancements in an All Programmable architecture that scales from 20 nm planar through 16 nm FinFET technologies and beyond, in addition to scaling from monolithic through 3D ICs. Through analytical co-optimization with the X ilinx V ivado® Design Suite, the UltraScale architecture provides massive routing capacity while intelligently resolving typical bottlenecks in ways never before possible. This design synergy achieves greater than 90% utilization with no performance degradation.
Some of the UltraScale architecture breakthroughs include:
• Strategic placement (virtually anywhere on the die) of ASIC-like system clocks, reducing clock skew by up to 50%
• Latency-producing pipelining is virtually unnecessary in systems with massively parallel bus architecture, increasing system speed and capability
• Potential timing-closure problems and interconnect bottlenecks are eliminated, even in systems requiring 90% or more resource utilization
• 3D IC integration makes it possible to build larger devices one process generation ahead of the current industr y standard
• Greatly increased system performance, including multi-gigabit serial transceivers, I/O, and memor y bandwidth is available within even smaller system power budgets
• Greatly enhanced DSP and packet handling
The Xilinx UltraScale architecture opens up whole new dimensions for designers of ultra-high-capacity solutions.
Introduction to Xilinx Packaging Electronic packages are interconnectable housings for semiconductor devices. The major functions of the electronic packages are to provide electrical interconnections between the IC and the board and to efficiently remove heat generated by the device. Feature sizes are constantly shrinking, resulting in increased number of transistors being packed into the device. Today's submicron technology is also enabling large-scale functional integration and system-on-a-chip solutions. In order to keep pace with these new advancements in silicon technologies, semiconductor packages have also evolved to provide improved device functionality and performance. Feature size at the device level is driving package feature sizes down to the design rules of the early transistors. To meet these demands, electronic packages must be flexible to address high pin counts, reduced pitch and form factor requirements. At the same time,packages must be reliable and cost effective.
This application note describes how the existing dual-port block memories in the Spartan™-IIand Virtex™ families can be used as Quad-Port memories. This essentially involves a dataaccess time (halved) versus functionality (doubled) trade-off. The overall bandwidth of the blockmemory in terms of bits per second will remain the same.
The introduction of Spartan-3™ devices has createdmultiple changes in the evolution of embedded controldesigns and pushed processing capabilities to the “almostfreestage.” With these new FPGAs falling under $20, involume, with over 1 million system gates, and under $5for 100K gate-level units, any design with programmablelogic has a readily available 8- or 16-bit processor costingless than 75 cents and 32-bit processor for less than $1.50.
FPGAs have changed dramatically since Xilinx first introduced them just 15 years ago. In thepast, FPGA were primarily used for prototyping and lower volume applications; custom ASICswere used for high volume, cost sensitive designs. FPGAs had also been too expensive and tooslow for many applications, let alone for System Level Integration (SLI). Plus, the development
UART 4 UART參考設計,Xilinx提供VHDL代碼 uart_vhdl
This zip file contains the following folders:
\vhdl_source -- Source VHDL files:
uart.vhd - top level file
txmit.vhd - transmit portion of uart
rcvr.vhd - - receive portion of uart
\vhdl_testfixture -- VHDL Testbench files. This files only include the testbench behavior, they
do not instantiate the DUT. This can easily be done in a top-level VHDL
file or a schematic. This folder contains the following files:
txmit_tb.vhd -- Test bench for txmit.vhd.
rcvr_tf.vhd -- Test bench for rcvr.vhd.