多關節機器人在工業上已經得到了非常廣泛的應用,并且以后會用在越來越多的其他領域。多軸控制系統作為多關節機器人的核心,發展也十分迅速。傳統的多軸控制器體積比較龐大,擴展性不好。在工業4.0的時代,多軸控制系統也越來越智能,同時體積也在逐步減小,并且能夠聯網。EtherCAT現場總線是一種新興工業實時以太網總線,經過多年的技術發展,在通訊速度,拓撲結構等領域已經具有非常獨特的優勢。本課題的工作主要是將EtherCAT現場總線技術應用在多軸控制系統中,利用其技術優勢,進一步提高多軸控制器的擴展性和靈活性,使控制系統網絡化。 本研究首先分析了多軸控制系統的現狀以及發展趨勢,介紹了EtherCAT現場總線技術,在此基礎上,確立了多軸控制系統的開發架構以及開發方法。然后,課題設計完成了基于ET1100的通訊板。在此通訊板的基礎上,使用STM32單片機作為EtherCAT應用層控制芯片,設計并完成了數字輸入輸出部分和模擬輸入輸出部分的軟硬件。同時,為了達到工業現場的要求,設計著重考慮了安裝的便利性,熱插拔功能以及抗干擾性。接著,課題以實驗室雕刻機為控制對象,以PC機作為EtherCAT主站,在主站上的TwinCAT軟件中設計實現了雕刻機的正逆運動學算法,并設計實現人機界面。同時,課題使用ADS通訊接口與C#高級語言進行通訊,實現了數據的交互。為了更加方便實現人機交互,課題也基于.NET架構設計了人機界面,這樣方便Windows平臺對多軸系統的直接或者遠程控制。最后,在雕刻機平臺上對設計的多軸控制系統進行調試和實驗,同時對多軸之間的同步性能進行測試,完成了雕刻機的單軸運動,點動運動,多軸聯動以及示教運動,并且多軸之間的實時性在微秒級。
上傳時間: 2022-05-29
上傳用戶:qingfengchizhu
矢量控制理論的提出1971年,由德國Blaschke等人首先提出了交流電動機的矢量控制(Transvector Contrl)理論,從理論上解決了交流電動機轉矩的高性能控制問題。其基本思想是在普通的三相交流電動機上設法模擬直流電動機轉矩控制的規律,在磁場定向坐標上,將電流矢量分解成產生磁通的勵磁電流分量ia和產生轉矩的轉矩電流分量i,并使兩分量互相垂直,彼此獨立,然后分別進行調節。這樣,交流電動機的轉矩控制,從原理和特性上就與直流電動機相似了。因此,矢量控制的關鍵仍是對電流矢量的幅值和空間位置的控制。矢量控制的目的是為了改善轉矩控制性能,而最終實施仍然是落實在對定子電流交流量)的控制上。由于在定子側的各物理量(電壓、電流、電動勢、磁動勢)都是交流量,其空間矢量在空間上以同步旋轉,調節、控制和計算均不方便。因此,需借助于坐標變換,使各物理量從靜止坐標系轉換到同步旋轉坐標系,站在同步旋轉的坐標系上觀察,電動機的各空間矢量都變成了停止矢量,在同步坐標系上的各空間矢量就都變成了直流量,可以根據轉矩公式的幾種形式,找到轉矩和被控矢量的各分量之間的關系,實時地計算出轉矩控制所需的被控矢量的各分量值--直流給定量。按這些給定量實時控制,就能達到直流電動機的控制性能。由于這些直流給定量在物理上是不存在的、虛構的,因此,還必須在經過坐標的逆變換過程,從旋轉坐標系回到靜止坐標系,把上述的直流給定量變換成實際的交流給定量,在三相定子坐標系上對交流量進行控制,使其實際值等于給定值。
上傳時間: 2022-05-30
上傳用戶:
隨著微電子技術和電力電子技術的發展,伺服運動控制系統已經從模擬控制發展到全數字控制,其性能不斷提高,在工業機器人、數控機床等設備中獲得了廣泛應用.基于現場總線網絡的伺服運動控制系統以其高可靠性、快速性和穩定性成為伺服運動控制系統的發展趨勢。德國倍福公司提出的EtherCAT工業以太網技術在數據鏈路層采用了實時調度的軟件核,并提供了過程數據傳輸的獨立通道,提高了系統的實時性:該網絡還具有靈活的拓撲結構,簡單的系統配置,較低的構建成本等特點,適合應用于運動控制領域。目前,該網絡受到了運動控制開發商的廣泛關注。本文以海洋研究領域的造波機系統開發為背景,利用EtherCAT從站接口控制器ET1100和DSP芯片TMS320F28335開發了EtherCAT從站設備,構建了一主一從的EtherCAT網絡結構實現了伺服系統精確的位置控制。論文首先對伺服運動控制系統的概念、特點進行了介紹,對其各個組成部分進行了詳細分析,并結合實踐經驗給出了自己的觀點,就目前廣泛應用于網絡運動控制中的兩種總線網絡進行了介紹。其次,詳細分析了EtherCAT網絡的原理、技術特點及主從站關鍵技術。結合本文的系統設計,介紹了1公司最新推出的用于1業控制的DSP片-TMS320F28335,分析了系統設計中用到的幾個運動控制模塊與通訊模塊,并給出了相應寄存器配置。最后在對EtherCAT網絡和DSP芯片TMS320F28335研究基礎上,開發了EtherCAT從站設備,避免了造波機系統中脈沖+方向位置控制方式長線傳輸的缺點,給出了開發系統的總體框架及主從站實現的關鍵細節,并給出了相應的實驗結論。本設計充分發揮了EtherCAT工業以太網絡實時數據傳輸的功能和TMS320F28335 DSP芯片運動控制功能,實現了運動系統高精度的位置控制。
上傳時間: 2022-06-01
上傳用戶:aben
引言伺服電機屬于一類控制電機,分為直流伺服電機和交流伺服電機兩種。由于交流伺服電機具有體積小、重量輕、大轉矩輸出、低慣量和良好的控制性能等優點,故被廣泛地應用于自動控制系統和自動檢測系統中作為執行元件,將控制電信號轉換為轉軸的機械轉動,由于伺服電機定位精度相當高,現代位置控制系統已越來越多地采用以交流伺服電機為主要部件的位置控制系統,本文的設計也正是用于噴印機的位置控制系統之中。1總體設計方案本控制系統選用松下MSMA082AIC型交流伺服電機,通過以單片機控制器實現對伺服電機的控制。同服電機的控制方式主要有位置控制、速度控制兩種,為了提高其帶動噴頭運行的平穩性,選用了速度控制方式實現對伺服電機的控制,以利用伺服電機系統自帶的s型曲線控制模型,達到理想的控制效果。系統組成框圖如圖1所示,其中單片機控制器向伺服驅動器輸出控制信號,再通過伺服驅動器驅動伺服電機按要求動作,同時,控制器接收固定在祠服電機轉軸上的光電編碼盤隨著電機轉動而產生的反饋脈沖信號,以實現對伺服電機帶動的噴頭運行位置的檢測控制,形成團環控制系統。為了實現對噴印位置的精確控制,所以選用了分辨率為2000p/r的光電編碼盤作位置傳感單元,將伺服電機轉軸的轉角位置變換成電脈沖信號,以供單片機控制器對噴印位置進行跟蹤控制。
上傳時間: 2022-06-01
上傳用戶:
#define PI (3.14159265)// 度數表示的角速度*1000#define MDPS (70)// 弧度表示的角速度#define RADPS ((float)MDPS*PI/180000)// 每個查詢周期改變的角度#define RADPT (RADPS/(-100))// 平衡的角度范圍;+-60度(由于角度計算采用一階展開,實際值約為46度)#define ANGLE_RANGE_MAX (60*PI/180)#define ANGLE_RANGE_MIN (-60*PI/180)// 全局變量pid_s sPID; // PID控制參數結構體float radian_filted=0; // 濾波后的弧度accelerometer_s acc; // 加速度結構體,包含3維變量gyroscope_s gyr; // 角速度結構體,包含3維變量int speed=0, distance=0; // 小車移動的速度,距離int tick_flag = 0; // 定時中斷標志int pwm_speed = 0; // 電機pwm控制的偏置值,兩個電機的大小、正負相同,使小車以一定的速度前進int pwm_turn = 0; // 電機pwm控制的差異值,兩個電機的大小相同,正負相反,使小車左、右轉向float angle_balance = 0; // 小車的平衡角度。由于小車重心的偏移,小車的平衡角度不一定是radian_filted為零的時候
上傳時間: 2022-06-01
上傳用戶:
旋轉編碼器速度檢測控制資料在電纜生產線上,通常需要檢測電纜的走線速度,用來控制收線電機的轉速和計算線纜的長度。成纜工藝參數的穩定,直接關系到電線電纜的質量。該項目是為某電纜廠的技術改造項目,要改造的設備是利用束線原理制造的盤絞式成纜機,改造的內容是更換全部電氣控制系統。這種成纜機的放線盤固定,而收線盤固在盤絞架上同時完成絞合和收線的雙重運動。工作時,在線纜盤直流電機的帶動下,完成電纜的收線運動,在排線電機的帶動下實現電纜在收線盤的整齊排列。在大盤電機的帶動下,通過齒輪箱帶動盤絞架實現軸向旋轉,完成電纜絞合運動,是保證節距的關鍵。線速度是由收線盤的旋轉速度決定的,如果收線電機的轉速恒定,收線盤隨著收線軸的變粗,線速度會增大,因此,為保證收線速度恒定,要逐漸降低收線電機的轉速。摘 要:通過對盤絞式成纜機工作過程的分析,說明了對收線電機的控制要求,采用AT89C51 單片機為控制核心,通過檢測旋轉編碼器在單位時間內輸出的脈沖數,與標準脈沖數進行比較,控制收線電機調速器的給定值,從而控制收線電機的旋轉速度,實現了線纜的均勻走線速度控制。給出單片機與旋轉編碼器組成的閉環線速度控制系統的電路原理及主要控制程序的設計方法。其簡潔的電路設計和典型的控制方法具有較高的參考價值。
標簽: 旋轉編碼器
上傳時間: 2022-06-06
上傳用戶:
原創資料。TI官方手冊上的5V/10A開關電源的saber仿真,自己寫報告時做的。
上傳時間: 2022-06-07
上傳用戶:zhanglei193
針對目前我國已經存在的溫室控制系統成本高、網絡化不足以及測量環境因子單一等問題,文中開發了一套基于STM32的溫室遠程控制系統。該系統通過利用STM32單片機作為溫室內的控制器以及MFC編寫的控制軟件實現對溫室內空氣溫度、空氣濕度、光照強度和CO2濃度多個環境因子的遠程監測和控制。 系統的硬件電路設計包括STM32控制器、數據采集模塊、設備控制模塊、網絡接口模塊、實時顯示模塊以及數據存儲模塊等。其中數據采集模塊采用DHT11、MG811以及BH1750傳感器進行環境因子的測量,設備控制模塊通過控制繼電器通斷來控制溫室內的加熱系統和光照系統等執行設備,STM32通過ENC28J60接入網絡實現遠程控制,顯示模塊實現各個環境因子的實時顯示,數據存儲模塊采用外接SD卡的方式進行數據的存儲。在STM32的程序設計中采用了庫函數的開發方式設計了測量程序、顯示程序以及控制程序。通過在STM32中移植μC/OS-Ⅱ操作系統實現多任務的運行,移植LwIP協議使STM32可以接入網絡,實現控制的網絡化。在VC6.0平臺下利用MFC設計了控制軟件,控制軟件和STM32之間通過TCP/IP協議進行數據和命令的傳輸。控制軟件的主要功能是對溫室內的多個環境因子進行遠程監測和對執行設備進行遠程控制。在控制軟件設計中,采用面向對象的方法將相關的操作函數封裝到類中,便于對系統進行升級,采用多線程的方法解決了多個任務同時運行的狀況。將控制過程中產生的數據保存到數據庫中,可以對系統運行產生的數據進行分析和利用。 為了對系統進行測試,在文中搭建了一個小型的溫室并將控制器安裝在溫室內。經過測試,文中設計的溫室控制系統可以實現對溫室內空氣溫度、空氣濕度、光照強度和CO2濃度的遠程實時監測,數據每秒更新一次。當上述的環境因子超過控制軟件上設置的上下限范圍時,系統會報警,此時可以在控制軟件上控制執行設備的通斷來調節該因子使其到達設置的范圍內。
上傳時間: 2022-06-09
上傳用戶:qingfengchizhu
造紙烘缸的穩定可靠在造紙行業當中十分重要,是產品獲得高質量的保證。傳統烘缸采用蒸汽或導熱油加熱等方式,加熱溫度較低,且熱效率不高。電磁感應加熱系統具有能源利用率高,可得到更高加熱溫度以及環境友好等優點,在造紙行業中得到了廣泛的應用。 本文設計了一種基于單片機控制的電磁感應加熱系統,通過硬件設計和軟件的優化,達到了較高的控制品質。硬件設計包括內置式電磁烘缸的設計、單片機的選型以及基于單片機的控制電路的設計。軟件設計則主要包括感應加熱電源的鎖相控制、電磁烘缸的加熱控制。本系統運行高效穩定,加熱效率高,已廣泛用于實際工藝中。
上傳時間: 2022-06-10
上傳用戶:d1997wayne
超聲波換能器由于負載的變化以及外界環境的變化等因素,導致超聲波電源的輸出頻率與諧振頻率不匹配,從而使清洗效果不佳。超聲波電源是超聲清洗機的核心部分,為實現其高效穩定的工作,需要對其工作頻率進行自動跟蹤控制。為此,本文設計了基于單片機PIC16F886為控制核心的超聲波電源,其額定輸出功率為600W,工作頻率為20kHz,并實現了對頻率的實時跟蹤控制。主要研究內容如下: 首先,根據超聲波電源的性能指標要求,設計了超聲波電源主電路系統,主電路系統由整流濾波電路、逆變電路、匹配電路等單元組成,逆變電路采用全橋逆變拓撲結構,文中對主電路系統進行了詳細分析與設計,并采用Multisim仿真軟件對主電路系統各個部分進行仿真。 其次,設計了超聲波電源頻率跟蹤的控制方案,該控制方案采用鎖相環頻率跟蹤的控制思路并結合PID控制方法。為此設計了相應的控制軟件,采用C語言編寫主程序、A/D轉換程序、PID控制程序等。 最后,以PIC16F866單片機芯片為控制核心,設計了超聲波電源控制系統,主要包括采樣電路、驅動電路、單片機外圍電路等,分析了其工作原理。并采用Proteus軟件對控制系統進行仿真。仿真結果表明,所設計的超聲波電源控制系統能實現頻率自動跟蹤,與超聲波換能器相匹配,工作在諧振狀態,達到了設計要求。
上傳時間: 2022-06-11
上傳用戶:jason_vip1